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ABSTRACT

Spatial Pyramid Match lies at a heart of modern object cat-
egory recognition systems. Once image descriptors are ex-
pressed as histograms of visual words, they are further de-
ployed across spatial pyramid with coarse-to-fine spatial lo-
cation grids. However, such representation results in extreme
histogram vectors of 200K or more elements increasing com-
putational and memory requirements. This paper investigates
alternative ways of introducing spatial information during for-
mation of histograms. Specifically, we propose to apply spa-
tial location information at a descriptor level and refer to it
as Spatial Coordinate Coding. Alternatively, x, y, radius, or
angle is used to perform semi-coding. This is achieved by
adding one of the spatial components at the descriptor level
whilst applying Pyramid Match to another. Lastly, we demon-
strate that Pyramid Match can be applied robustly to other
measurements: Dominant Angle and Colour. We demonstrate
state-of-the art results on two datasets with means of Soft As-
signment and Sparse Coding.

Index Terms— Image classification, spatial pyramid
match, dominant angle, colour, soft assignment, sparse cod-
ing, bags-of-words

1. INTRODUCTION

Spatial Pyramid Match [1] has provided foundations for ma-
jority of the modern object category recognition approaches.
It was derived from Pyramid Match Kernel [2] that partitions
descriptor space and immediately became a popular method
to incorporate spatial information into class models. A num-
ber of systems apply this scheme, to name a few: Soft As-
signment with χ2 kernel [3, 4, 5], Linear Coordinate Cod-
ing [6], Sparse Coding [7], Local Coordinate Coding [8], and
approaches using Fisher Kernels [9] or Super Vector Cod-
ing [10]. Note the last two methods produce extremely large
histograms which are further extended with SPM scheme to
boost their performance. This results in large representation
sizes up to [(2D+ 1)×K − 1]×S(N2) and (D+ 1)×K ×
S(N2) respectively, where D denotes dimensionality of ap-
plied descriptors,K is a visual vocabulary size,N is a number
of SPM levels, and S(N l) =

∑N
n=1 n

l. Another approach is
based on features extracted from spatial maps derived from

a hierarchical Gaussian process [11] to form Pyramid Match
representation. Further, some approaches combine horizon-
tal and vertical spatial image partitioning, e.g. [4, 12] used
1×1, 2×2, and 1×3 horizontal, 3×1 vertical windows whilst
[13, 10] used 1× 1, 2× 2, and 1× 3 horizontal divisions.

As a first contribution, we propose a scheme called Spatial
Coordinate Coding that applies spatial coordinate information
at the descriptor level. This reduces the histogram sizes from
H × S(N2) to H × S(11), where H is a size of the input
histograms. Further, we manipulate spatial information to be
absorbed partially at the descriptor and SPM levels and re-
duce histogram sizes from H × S(N2) to H × S(N1). SCC
is demonstrated to work with two popular descriptor cod-
ing methods: Soft Assignment [3, 5] and Sparse Coding [7].
Note, such scheme can be also applied with alternative coding
methods [9, 10]. As a next contribution, we investigate appli-
cation of Pyramid Match to different types of measurements.
Dominant Angle (DA) [14] can be applied in place of spa-
tial information by: i) DA normalising all descriptors, and ii)
applying Pyramid Match to DA directly. The colour informa-
tion of Segmentation-Based Descriptors [12] is experimented
with in similar spirit. Lastly, we demonstrate that Spatial Co-
ordinate Coding and Colour Pyramid Match deliver state-of-
the-art results on two datasets.

2. SPATIAL COORDINATE CODING

Popular techniques for representing images as histograms
with means of local image descriptors are Soft Assign-
ment [3, 5] and Sparse Coding [7]. They apply spatial in-
formation at Pyramid Match level yielding long histograms
of size H × S(N2). Let xs

n = [
xs
n

wim
,

ys
n

him
]T be spatial

coordinates of a descriptor xn∈{1,..,N} normalised with
respect to image width wim and height him. Further-
more, let xp

n = [r, φ]T be vectors with the unit normalised

radius r =
√

(
xs
n

wim
− 1

2 )2 + (
ys
n

him
− 1

2 )2/
√
2
2 and angle

φ = [φ(
xs
n

wim
− 1

2 ,
ys
n

him
− 1

2 ) + π]/(2π). Let mk∈{1,..,K}
be visual words of a vocabulary of size K built by either
k-means or randomly sampling the descriptors of a given
training set (Random Descriptor Set Sampling aka RDSS).
Let ms

k and mp
k be the corresponding spatial vocabulary in-

formation for (x, y) and (r, θ) parametrisations, respectively.



In order to prevent full Pyramid Match and to benefit from the
spatial information, we propose to extend Soft Assignment
and Sparse Coding schemes by applying into their workings
either: i) one of spatial parametrisations x

′

n such as xs
n/2

or xp
n/2 leading to histogram sizes H × S(11), or ii) one of

semi-spatial parametrisations x
′

n such as xs
n

wim
, ys

n

him
, r, or φ.

In the latter case, complementary spatial channels, e.g. x and
y are processed one by SCC and the other by SPM scheme.
The same holds if one chooses r and θ. This leads to smaller
size H × S(N1) compared to standard SPM: H × S(N2).
Spatial Coordinate Coding for Soft Assignment. Soft As-
signment [3, 5] is derived from GMM [15] with simplified
model parameters θ = (θ1, ..., θK) = ((m1, σ), ..., (mK , σ)).
K denotes number of components, mk∈{1,..,K} are Gaussian
means, σ is the smoothing factor, and xn∈{1,..,N} are the
descriptors of a dataset. The Component Membership Proba-
bility for this model is expressed as:

p(k|n) =
g(xn;mk, σ)∑K

k′=1 g(xn;mk′ , σ)
(1)

The histogram representation is expressed as the expected
value of membership probabilities per component k over de-
scriptors xn∈Nim of an image im: [ENim(p(k|n))]k∈{1,..,K}.

Enhancing formula 1 with spatial or semi-spatial informa-
tion can be done by adding spatially parametrised vectors x

′

n

and m
′

k to Gaussian components as follows:

g
′
(n, k) = g[(1− α)xn; (1− α)mk, σ

′
]g(αx

′

n;αm
′

k, σ
′
)

(2)
The additional parameter α ∈< 0, 1) balances the strength
of spatial coordinates versus descriptor vectors. Redefined
membership probabilities are expressed by:

p(k|n) =
g

′
(n, k)∑K

k′=1 g
′(n, k′)

(3)

Optimal smoothing factor σ
′

of Soft Assignment reformu-
lated in equation 3 differs from σ due to the additional spatial
information introduced to the model. However, there is a re-
lation between σ and σ

′
that can be approximated as:

σ
′
≈ σ

(
1 +

√
dα2

1− α
d

D

)
(4)

We skip derivations of equation 4, though, it suffices to say σ
is extrapolated proportionally to the increase in both descrip-
tor dimensionality and energy introduced by adding spatial
information. For a pair (x, y) or (r, φ) (Spatial Coordinate
Coding) d = 2. For Semi-Spatial Coordinate Coding d = 1.
D is the descriptor dimensionality. One can either extrapolate
σ

′
from σ or estimate it from the data [5].

Spatial Coordinate Coding for Sparse Coding. The oper-
ating principle of Sparse Coding [7] is to express each de-
scriptor vector as a sparse linear combination of neighbour-
ing dictionary anchors. First norm over assignments favours

only a small subset of activations leading to sparsity. This
was found to perform well if combined with Spatial Pyra-
mid Match and the maximum pooling [7]. Finding sparse as-
signments over a given descriptor xn and a visual vocabulary
MD×K is achieved by optimising the following with respect
to un:

min
un

∥∥∥xn −Mun

∥∥∥2 + β|un| (5)

β regulates the sparsity of the solution. The histogram rep-
resentation is expressed as a maximum value of assignments
per anchor k over descriptors xn∈Nim

of an image im. En-
hancing formula 5 with spatial or semi-spatial information re-
quires adding spatially parametrised vectors x

′

n and m
′

k to
Lasso problem:

min
un

(1−α)
∥∥∥xn −Mun

∥∥∥2+α
∥∥∥x′

n −M
′
un

∥∥∥2+β|un| (6)

Note, both Soft Assignment (equation 1) and Sparse Cod-
ing (equation 5) can be enhanced by Spatial Coordinate
Coding by just concatenating appropriately image descrip-
tors with the corresponding spatial representation x

′

n, i.e.:
xa
n = [

√
1− αxT

n ,
√
α(x

′

n)T ]T . The same applies to mk.

3. DOMINANT ANGLE AND COLOUR PYRAMID
MATCH

This section provides details on how to exploit Dominant An-
gle [14] (DA) and colour [12] information in Pyramid Match.
Variety of cues contribute valuable information and may be
appropriate for quantising them at multiple levels. The sun
and clouds appear in the sky, thus they are mostly contained in
the upper parts of images. If spatial positions Xs of an object
s introduce a spatial bias in images such that p(o = s|x) ≥
p(o = s) for x ∈ Xs, then the orientation of dominant edges
within images should also induce an orientation bias. DA is a
direction with respect to the origin of a local image descrip-
tor indicated by the highest gradients within the descriptor.
Note, trunks of trees t and fences are more likely to maintain
vertical positions Θt, therefore p(o = t|θ) ≥ p(o = t) if
θ ∈ Θt. Facial complexion f or fur of animals are likely to
be of a limited colour set Cf , thus p(o = f |c) ≥ p(o = f) if
c ∈ Cf is observed. Interestingly, using rotationally variant
descriptors with bag-of-words yields much better results [12]
compared to rotationally invariant counterparts. This shows
that the rotational bias helps in recognition. We introduce
DA to the classification process in two ways: i) by setting
x

′

n = θn, or ii) by performing Pyramid Match directly on θn.
Regarding colour, Segmentation-Based Descriptors [12] were
used as they consist of: i) orientations of image gradients xo,
ii) eigenvalues xe of dominant shapes, iii) opponent colour
histograms xc. We reduced 20D opponent vectors by PCA to
10D. Colour component c with the highest variance was fed
to Pyramid Match. The remaining 9 components replaced the
original opponent vectors (20D reduced to 9D).



SC1234 SC+SCC SA123 SA+SCC SA+SCC
Lin+SVM Lin+SVM χ2+KDA χ2+KDA χ2+KDA
1ker+val 1ker+val 1ker+val 1ker+val multiker+tst

48.7 47.0 49.8 51.6 62.15

Table 1. MAP for Pascal 2010 Action Classification.

4. EVALUATIONS AND CLASSIFICATION RESULTS

This section provides an experimental insight regarding Spa-
tial Coordinate Coding versus Spatial Pyramid Match [4, 12].
Tests were performed on Pascal 2010 [16] Action Classifica-
tion set (301 training, 307 validation, and 613 testing bound-
ing boxes) and Flower 17 [17] set (3 splits of data, each con-
sisting of 680 training, 340 validation, and 340 testing im-
ages). For Pascal 2010, we report results mainly on valida-
tion set as testing set is not publicly available. We also quote
our results on test set submitted for Pascal 2010 [16] compe-
tition. Experiments on Dominant Angle Pyramid Match were
performed on Pascal 2007 [16] Main Challenge.

Two variants of descriptors were exploited: grey-scale
SIFT [14] (Pascal 2010 and 2007 sets) and Segmentation-
Based Image Descriptors [12] (Flower 17 set). Dense feature
sampling on a regular grid with the intervals of 8, 14, 20, and
26 pixels, and patch radii of 16, 24, 32, and 40 pixels was ap-
plied for SIFT. This produced 1200, 3690, and 2300 vectors
per image on average on Pascal sets and Flower 17 set respec-
tively. We observed KDA [4] classifier always worked better
with χ2 [4] and SVM with linear kernels, thus we used such
set-up. Kernels were formed from either soft assigned [3, 5]
(SA) or sparsely coded [7] (SC) histograms. As a reference,
Spatial Pyramid Match (SPM) with 3 and 4 levels of depth
was employed for SA and SC respectively. The visual vocab-
ulary of size K = 4000 was produced by k-means (Pascal
2010 and 2007) and random sampling of descriptors on the
training set (Random Descriptor Set Sampling aka RDSS) of
Flower 17. Note, we are not concerned directly with optimis-
ing visual dictionaries as our ideas are not affected by them.
Pascal 2010 and Spatial Coordinate Coding. Pascal 2010
Action Classification provides bounding boxes delineating
humans performing actions to classify. Every person’s head
is roughly aligned to the top middle location of such bound-
ing box. Positions of interacted objects can be expressed
with respect to the top middle reference point. Thus, Spa-
tial Coordinate Coding is applied and compared with Spatial
Pyramid Match (SPM). Table 1 presents the results achieved
on this set. Sparse Coding SC1234 with SPM (4 levels) turned
out worse than Soft Assignment SA123 with SPM (3 levels).
Also, Spatial Coordinate Coding combined with Sparse Cod-
ing SC+SCC seemed slightly worse than SC1234. SA with
SCC (denoted as SA+SCC) was the strongest performer
leading to state-of-the-art 62.15% MAP on testing set com-
pared to other systems [16]. This was achieved by averaging
multiple kernels of descriptor variants as in [12, 4]. We ob-
served SA with χ2 is well suited to benefit from SCC scheme.

DA Inv. DA Var. DACCα= 1
2

DACCα= 2
3

DACCα= 4
5

46.00 50.23 47.2 49.80 50.24
DA Var.+ DA12468 DA136912 DA136912

SPM 54.3 52.30 53.40 SPM 56.3

Table 2. MAP for Pascal 2007 Main Challenge comparing
impact of Dominant Angle on classification.

Pascal 2007 and Dominant Angle Pyramid Match. Pascal
2007 consists of 20 object categories with high variability
in intra-class appearance, rotation, and spatial position. This
section presents impact of Dominant Angle (DA) combined
with Pyramid Match on classification. The following results
were achieved with Soft Assignment, χ2 kernel, and KDA
classifier. According to table 2, DA is an important modality
for robust classification. DA Inv. is a baseline result with
SIFT descriptors deemed invariant to rotation. Applying
invariance decreased performance compared to Dominant
Angle variant set (DA Var.) from 50.23% MAP down to 46%
MAP. We further used DA invariant SIFT and injected DA di-
rectly to equations 2 and 3 (referred to as DACC) with α = 1

2 ,
2
3 , and 4

5 . DACCα= 4
5 achieved results of 50.24% MAP on

a par with DA Var. Therefore, DA is a robustly estimated
reliable cue. After reintroducing it back to the pipeline, full
performance was regained. Further, DA is also suited for
quantisation at multiple levels with Pyramid Match. Note,
the angle invariant SIFT fed to Pyramid Match with 5 levels
of DA splits 1, 3, 6, 9, 12 (DA136912 in the table) achieved
53.4% MAP that outperformed DA Var. SIFT by 3.1% due
to multiple levels of angle quanitsation. This combined with
Spatial Pyramid Match (DA Var.+SPM) boosted performance
from 54.3% to 56.3% MAP with one set of descriptors.
Flower 17, Spatial Coordinate Coding, and Colour Pyra-
mid Match. Performance of both Spatial and Semi-Spatial
Coordinate Coding was evaluated in more detail on Flower
17 dataset with means of both Soft Assignment and Sparse
Coding. According to results in table 3, Soft Assignment
with SVM and the linear kernel (SA Lin SVM row) achieved
better results of 84.7% MAP if using full Spatial Pyramid
Match (SPM) with 3 levels of depth rather than SCC. Ra-
dius and θ parametrised SPM (SPMrθ) was a close performer.
Also, Spatial Coordinate Coding SCCα= 9

14 achieved close re-
sults of 82.93% MAP. The gap of 1.8% in performance be-
tween two methods is bridged by Semi-Spatial Coordinate
Coding (table 4). Note, SA with χ2 and KDA classifier (SA
χ2 KDA row) exploited SCC to its fullest potential outper-
forming SPM (N = 3) by roughly 1.8% and reducing his-
togram sizes from 4K×S(32) = 56K to 4K×S(11) = 4K.
Lastly, Sparse Coding with the linear kernel and SVM (SC
Lin SVM row) benefited 1.2% from SCC over no spatial in-
formation added (NO SCC) whlist SPM (N = 4) led to about
1.6% over NO SCC. These results are further improved by
Semi-Spatial Coordinate Coding as presented in table 4.

According to table 4 (first row), all semi-spatial combi-
nations improved results by up to 0.7% over SA with the



SA Lin SCCα= 6
11

SCCα= 9
14

SPM SPMrθ
SVM 82.36 82.93 84.7 83.7

SA χ2 SCCα= 6
11

SCCα= 9
14

SPM SPMrθ
KDA 90.96 91.16 89.3 89.63

SC Lin NO SCCα=0 SCCα= 1
3

SPM
SVM 87.16 88.43 88.86

Table 3. MAP for Flower 17 set comparing Spatial Pyramid
Match with Spatial Coordinate Coding scheme.

linear kernel and SPM. We combine SPM and SCC in the
table with specific semi-spatial channels x, y, r, θ as in sec-
tion 2. SA with χ2 kernel and KDA classifier (second row)
favours full SCC reaching 91.16% compared to 90.4% MAP
for SPMy+SCCx. Sparse Coding (bottom row) benefited
from semi-spatial variants SPMx+SCCy and SPMθ+SCCr
outperforming full SPM by 0.34% and limiting histogram
sizes from 4K × S(42) = 120K to 4K × S(31) = 24K.

As experiments on Flower17 benefit from colour cues on
the descriptor level [12], we also investigated benefits of Pyra-
mid Match quantisation applied to the colour as explained
in section 3. Soft Assignment with χ2 kernel, KDA classi-
fier, and SCC (91.16% MAP, 86.4% accuracy) were further
enhanced by this method and yielded state-of-the-art 92.2%
MAP (87.4% accuracy). This, if combined with Colour SIFT
at kernel level [4], increased to 95.2% MAP (91.4% accu-
racy). In contrast, the runner-up reports 86.7% accuracy [18].

5. CONCLUSIONS

We have presented a novel method injecting spatial infor-
mation to the classification process at the descriptor level.
This resulted in significantly smaller histogram representa-
tions and improved performance for Soft Assignment and
χ2 kernels. Also, semi-spatial approach was proposed to
benefit more demanding histogram coding approaches like
Sparse Coding with linear kernels. Overlooked importance of
Dominant Angle mechanism was brought to attention as we
demonstrated its benefit on classification if applied to Pyra-
mid Match and complemented by Spatial Pyramid Match.
As objects exhibit variable intra-class colour similarity, we
showed that colour components also thrive on quantising with
Pyramid Match. This led us to state-of-the-art results on both
Pascal 2010 Action Classification and Flower17 datasets.
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