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Summary

Visual Category Recognition aims at fast classification of objects, as well as scenery,
action, and semantically complex concepts in collections of unannotated images. Its
applications include security and crime prevention, rapid selection of content for efficient
media practices, television and press archives, organisation of visual content in the social
media, e-commerce, robotic recognition, and many more.

There exist a variety of approaches to visual categorisation. However, due to complex
nature of visual appearances and complex taxonomy of objects, a simplifying statistical
model developed for natural language processing, called Bag-of-Words, is typically used.

In such a model, descriptors are extracted from images at keypoint locations and then
expressed as vectors representing visual word appearances, referred to as mid-level fea-
tures. A pooling step is carried out to transform mid-level features from an image into
a final vectorial representation called image signature. Finally, a classifier is applied.

Segmentation-based interest points for matching and recognition are investigated first.
Two simple methods for extracting features from the segmentation maps are proposed.
They focus on the boundaries and centres of the gravity of the segments.

Segmentation-based image descriptors are proposed next. They are extracted from
pairs of adjacent regions from an unsupervised segmentation. Thus, semi-local struc-
tural appearances are exploited. This limits contribution of uniform regions.

A highly popular technique for coding the local image descriptors in Bag-of-Words,
called Soft Assignment, is combined with Linear Coordinate Coding to minimise its
quantisation loss which strongly correlates with the best classification performance.

An approach that introduces spatial information to Bag-of-Words, called Spatial Coor-
dinate Coding is proposed. It reduces the size of mid-level features tenfold. Moreover,
as dominant orientations of edges and colour are sources of bias in images, we learn them
at multiple levels of coarseness by Dominant Angle and Colour Pyramid Matching.

A number of techniques for generating mid-level features as well as various pooling
methods that aggregate mid-level features into image signatures are investigated. We
generalise these pooling methods to account for the descriptor interdependence and
introduce an improved pooling that addresses noise effects in mid-level features.

Bag-of-Words typically extract the first-order statistics from mid-level features. To im-
prove recognition, aggregation over co-occurrences of visual words in mid-level features
is proposed. An appropriate derivation is provided and various likelihood inspired pool-
ing operators investigated. Moreover, an extension to multiple modalities is proposed.

Key words: Bag-of-Words, Keypoints, Descriptors, Soft Assignment, Sparse Coding,
Spatial Coordinate Coding, Max-pooling, Dominant Angle Pyramid Matching, Mid-
level Features, @n Pooling, Tensor, Second-order Occurrence Pooling, Co-occurrences.
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Chapter 1

Introduction

The cognition of visual reality can be attributed to the primates and other animals.

Perception of visual stimuli is so valuable in the natural habitat that complex image-

forming eyes are said to have evolved some 50 to 100 times [Haszprunar, 1999]. Human

interactions with objects, simple daily routines, as well as skilled tasks rely on our

cognitive abilities to distinguish from 30K of objects [Biederman, 1987] according to

their utility. Arguably, one of the biggest challenges in Computer Vision is to discover

mathematical models that could enhance computers with such an ability to perceive

and infer on a par with the human. However, the complexity of visual stimuli and

the subtle object taxonomy [Torralba et al., 2008] prove this a formidable task. The

Computer Vision community has been focusing on a number of tractable aspects of

Visual Category Recognition (VCR):

• Visual Object Category Recognition aims at classification of multiple objects of

varied nature in collections of unannotated images. The examples of objects

include human, cat, chair, train, bottle, etc. A recognition algorithm has to predict

which of these objects are present in any given image [Everingham et al., 2007].

• Scene Category Recognition extends the above problem to recognition of the envi-

ronments. The categories of interest often include (but are not limited to) office

space, shopping areas, kitchen, campus, forest, city, country side, etc.

1
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• Action Recognition and Human Action Recognition focus on determining which

activities are performed in any given image [Everingham et al., 2010] (or a video

footage). Often, the main goal is to determine the human activity that may either

relate to human dynamics (e.g. running, walking, boxing) or human interaction

with objects (e.g. phoning, driving, reading).

• Visual Concept Detection can be seen as a generalisation of the above problems

[ImageCLEF, 2011, Nowak et al., 2011]. It addresses recognition of concepts of a

varied nature, including semantically complex topics, e.g. party life, funny, work,

birthday party, beautiful, violent, sport event, conference, etc.

Other problems in Computer Vision that are related to VCR also include:

• Visual Object Detection and Person Layout Detection that are concerned with

locating objects of interest within images, recognising their categories, and de-

lineating them with bounding boxes. For the latter problem, human body parts

have to be recognised and delineated, e.g. head, hands, arms, legs.

• Visual Object Segmentation that determines location of objects of interest, recog-

nises their categories, and provides pixel-wise delineation of their extent in images.

• Image Retrieval that addresses fast searching through vast collections of images

for the content visually similar to a query image.

• Medical Recognition that provides sophisticated warning systems for a variety of

medical conditions, e.g. recognition of cancer.

• Remote Sensing that exploits multispectral image classification, e.g. recognition

of suspicious buildings during the reconnaissance flights.

• Face Detection and Recognition that are concerned with distinguishing faces from

backgrounds and recognising subject’s identity, respectively.

• Emotion Recognition that classifies the body language and facial expressions, e.g.

happy, sad, angry, confusedscared, etc.
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(a) image (b) recognition (c) detection (d) segmentation

Figure 1.1: Illustration of fundamental problems that Visual Category Recognition

deals with. (a) An input image, (b) Visual Object Category Recognition results in a

list of objects in the image, (c) Visual Object Detection results in a delineation of these

objects, (d) Visual Object Segmentation results in the pixel-wise outlines.

• Gesture Recognition that aims at classification of the signs and signals expressed

by the human body language (often hands and head gestures).

• Gait Analysis which is a study of human motion that helps in recognition of sub-

jects’ identities. This is a particular example of even wider Biometric Recognition.

The above topics do not constitute by any means an exhaustive list of all current

directions of research. However, such well-defined topics help study a wide scope of

VCR and other related problems as the standardised frameworks for comparison and

benchmarking are available. Figure 1.1 illustrates Visual Object Category Recognition,

as well as Visual Object Detection and Segmentation. For simplicity, these problems

are referred to as classification (or visual categorisation), detection, and segmentation.
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This thesis is mainly concerned with Visual Object Category Recognition and Concept

Detection in the large collections of images. The methods that will be proposed are also

applicable to Human Action Recognition and Scene Category Recognition. They all are

referred to as classification or visual categorisation. The datasets, evaluation protocols,

prior knowledge in this area, as well as pipelines used for VCR will be described later.

The next section motivates this research followed by the background to VCR, typically

encountered challenges, and the list of the contributions made in this thesis.

1.1 Motivation

Beside a desire to reconcile the gap between the cognitive capabilities of humans and

machines, the VCR systems are applicable in principle in many every day scenarios.

In the Digital Economy of the future it is expected that large repositories of digital

information of various types will be compiled, stored, and processed for the benefit of

people. This includes images, video, sound, and text information. These modalities will

require an advanced storage and search technology commonly referred to as Content-

based Multimedia Information Retrieval. Currently, YouTube uploads an equivalent of

240000 full-length films every week, over 3 billion videos are viewed daily. Flickr was

hosting around 4 billion images at the beginning of 2010. 7 billion pieces of content is

shared on Facebook weekly. Nowadays, 85% of the UK population and 30.4% worldwide

have instant access to the Internet amounting to staggering 2.1 billion users. It is

forecast that the world population will increase from 7 to 9 billion people by 2020

putting strain on both multimedia based economy and security. Therefore, one can

envisage numerous applications that employ VCR:

• Security and Crime Prevention. Automated recognition of criminal content and

challenging behaviours on image and video sharing web services can improve their

efficiency and raise high standards of responsible broadcasting of personalised con-

tent. Moreover, an automated abnormal and suspicious event and action detection

for CCTV appears as a desired pivotal piece of functionality. This not only would

reduce operating costs but could help navigate a security officer directly to sus-

picious behaviours as decided by a well-trained classification algorithm. It would
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mitigate social unrest regarding CCTV related privacy breaches. An illustration

of the scope for such applications can be found in [INDECT, 2009].

• Efficient Media Practices. The usage of Visual Object, Scene, Action, and Con-

cept Recognition for in the media practices can be aptly illustrated by a project

in Classification and Retrieval of Images II [Koniusz et al., 2009]:

The BBC’s News Interactive’s User Generated Hub receives hundreds

of images per week from the public, though any major incident very

quickly increases the number of images received to an unworkable amount.

During the London bombings of July 7th hundreds of images were re-

ceived in a very short space of time. The first pictures of the incident

on the BBC’s web site were from the public. Such a material is often

topical and must be dealt with quickly. This project addresses object

recognition and retrieval of images to allow rapid selections to be made.

• Television and Press Archives. Public access to the vast television and press

archives can be also enhanced by VCR. For instance, the BBC has the largest

audio-visual archive in the world that is planned to be opened up for on-line

public access [BBC Press Office, 2008]. The BBC’s actions are part of a much

larger initiative for cultural institutions to release large sections of their material.

However, there exist technical challenges. The audio-visual content has often a

very basic description, e.g. title, transmission date, synopsis, genre, and contrib-

utors. Hence, there is a need to enhance the ways of discovering content through

automated audio-visual searches as opposed to traditional text based approaches.

• E-commerce Engines. The customer on-line shopping experience can be enhanced

by applying the retrieval techniques that let users take photos of items and browse

for close matches amongst the items on sale. Moreover, sellers could gather all

details about the items they are about to sell with a single photo query that

is then matched against a dataset of commercial goods. Such facilities may be

particularly of use when textual annotation is ambiguous or scarce. A changing

face of car sales provides an interesting case study [Jung, 2012].
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• Social Media Networking. Large user generated photo collections are available on

Flicker, Picassa, and other web services. Ability to organise these collections by

categories of objects, concepts, genre, and moods could enhance on-line public

access to the photographs on the computing clouds [Huiskes and Lew, 2008].

• Robotics and Planetary Explorations. A desire to have autonomous robots that

function in a complex environment means these machines have to recognise a

variety of objects, scenes, and other environmental and geological features. There

is an increasing trend of using ever more autonomous exploratory vehicles in

environments inherently hostile to humans, e.g. Mars Rover or Mars Express

exploring Mars. These vehicles could perform an autonomous visual analysis of

obstacles to avoid. Moreover, the public was recently asked to help classify various

geological features in over 3 millions of images of the Martian surface taken by the

Mars Reconnaissance Orbiter [Zooniverse, 2012]. Having such amount of labelled

data could enable training and autonomous detection of unusual features.

• Medical Diagnosis and Well-being. There is an ongoing effort in development of

the medical search and classification engines. Diagnostic images from radiology,

dermatology, microscopy, as well as complex tomography and magnetic resonance

can be used in training and classification for potential health hazards [Tommasi

and Deselaers, 2010, Mller and Kalpathy-Cramer, 2010]. Moreover, the collapse

detection systems are hoped to improve quality of elderly patients’ life.

• Monitoring Wildlife Populations. The accurate estimation of wildlife population

density is difficult and requires considerable investment of resources and time.

Amongst many tools, the status of a wildlife population can be monitored in

some cases by usage of either satellite and aerial photography or even land infrared

thermal imaging stations. As the biology and ecology of the species of interest

vary, this topic poses constant new challenges [Witmer, 2005].

• Well-being of Animals in Research. Balancing animal-based research with animal

well-being is of great relevance [Weed and Raber, 2005]. A well-being of the

animals used in support of the research is often under the public scrutiny. The

VCR systems could provide a solution to non-invasive monitoring of the quality
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of animal sleep. The goal could be to distinguish between periods of comfort and

distress in order to bring some quality into sleep.

• Industrial and Food Quality Control. Due to a variety of industrial and food

products and ever changing regulations, there is a constant need for bespoke visual

inspection. This subject is widely studied, yet it always faces new challenges.

To facilitate applicability of VCR for the above problems, one has to address short-

comings of the state-of-the-art classification systems. Arguably, a long term goal is to

achieve accuracy closer to the human cognitive skills and improve their time complex-

ity. A simplifying statistical model developed for natural language processing, called

Bag-of-Words [Sivic and Zisserman, 2003, Csurka et al., 2004], is often used to address

challenges such as complex nature of visual appearances and difficult taxonomy of ob-

jects. The basic variants of such a model are explained in section 1.2. Bag-of-Words is

comprised of several functional modules, each having a strong impact on the quality of

image representation. Moreover, the interaction between these modules has to be taken

into account to assure that outputs of one unit match inputs of the next unit. Histor-

ically, improving visual categorisation relied on capturing a variety of complementary

modalities from images [Nilsback and Zisserman, 2006, Bosch et al., 2007, Tahir et al.,

2010]. We note that the edges of objects, entire object regions, textures, and numerous

colour spaces can be utilised together. Recent improvements applied to Bag-of-Words

highlighted that it is also possible to attain state-of-the-art visual categorisation with a

single modality rather than multiple cues [Yang et al., 2009]. Therefore, our technical

motivation is to study each of the modules in Bag-of-Words independently, propose

improvements based on a number of identified shortcomings, and also consider an in-

terplay between these modules. The list of contributions made in this thesis is provided

in section 1.5 while below are the details of technical motivation:

• In Bag-of-Words, multiple local image appearances are captured from an image

at keypoint locations that indicate visually rich regions of interest. Such features

are biologically inspired, however, they remain to be handcrafted. This provides

the scope to further investigate how to capture objects in images robustly, what

constitutes good features, and how to detect informative regions of interest.
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• These features are next expressed as vectors representing visual word appearances.

This constitutes an analogy to Bag-of-Words for natural language processing.

Due to the differences between the visual reality and text, this thesis seeks to

understand what is the exact role of this step and how to best perform it.

• Lastly, multiple visual word appearances are typically aggregated into a final

vectorial representation which enables training and classification. We seek to un-

derstand how to best aggregate the input information in this step, what evidence

has to be retained and why, and how the previous step affects this procedure.

1.2 Background

Visual Object Category Recognition and Concept Detection often employ three tasks:

• extraction of low level features from images, as outlined in section 1.2.1

• transformation of these features into succinct image representations that can be

compared against each other, as explained in section 1.2.2

• classification performed on these representations, as presented in section 1.2.3

1.2.1 Feature Extraction

For this step, various global and local descriptors have been proposed to date. In

Scene Category Recognition, global image descriptors are often used as scenery tends

to dominate an entire image. Therefore, the global appearance is relevant in such a

recognition problem. However, Visual Object Category Recognition has to deal with

objects that appear at various scales and orientations in images. Local image descriptors

are often employed for such a task. They are typically characterised by the degree of

their invariance to geometric and photometric image transformations [Mikolajczyk and

Schmid, 2005]. Moreover, as such local image descriptors operate on image patches,

they require a strategy for sampling these patches from an image. Often, interest point

detectors that determine blob and corner structures in images at multiple spatial scales
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are employed. The descriptors are centred on such keypoints and the surrounding

content is then described. The quality of these detectors is determined by measuring

the repeatability of discovered interest points under common image transformations

[Mikolajczyk et al., 2005]. Another popular strategy in VCR, where descriptors are

extracted at predefined spatial intervals for predefined number of spatial scales, is

called dense sampling. [Nowak et al., 2006].

Global Image Descriptors. Such descriptors are aimed at the efficient analysis of

global scenes. Local image statistics are extracted across several spatial regions a.k.a.

spatial girds that cover an entire image. These statistics may compete locally for the

winner-takes-all to represent a given local region. They are then concatenated into

holistic image representations. For example, set of biologically inspired early-visual

features are extracted in [Siagian and Itti, 2007] by computing statistics at multiple

spatial scales in so-called feature channels to account for colour, intensity, orientation,

flicker and motion. These operations are repeated in every spatial region.

Local Image Descriptors. They transform image patches into local image represen-

tations that remain stable (to a certain degree) under image rotation, scale and view-

point changes, small translation, varied brightness, blur, and inconsistency of colour.

Such descriptors have to match similar objects under these transformations and yet

separate appearances for different classes of objects. A Scale Invariant Feature Trans-

form (SIFT) descriptor [Lowe, 1999] fulfils the above needs and is widely used in VCR.

The operating principle of this descriptor can be explained in the following steps: i) the

image gradients are computed for every pixel on the luminance channel by convolving

a given patch with the vertical and horizontal operators [−1 0 1] and [−1 0 1]T , ii) these

gradients are transformed into two matrices of the gradient amplitudes and phases,

respectively, iii) for every pixel, the gradient phase and spatial location within the

patch are typically quantised into one of 8 angular and 4×4 vertical and horizontal

values, iv) for every pixel, such a quantized value determines which vector bin (one from

8×4×4) is updated by the corresponding gradient amplitude. The final vector is then

`2 norm normalised. Often, additional steps are performed: v) the gradient amplitude

is weighted by a Gaussian window imposed over the patch, vi) bilinear interpolation
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(a) gradient amplitudes (b) gradient phases

(c) amplitudes and phases as vectors (d) final descriptor

Figure 1.2: Steps required to compute the SIFT descriptor. (a) The map of gradient

amplitudes is computed from the vertical and horizontal maps of gradients. (b) The

corresponding map of gradient phases. (c) The amplitude and phase are illustrated as

vectors (note they are orthogonal to the boundaries of petals). (d) The final descriptor.

is performed during the amplitude assignment into the angular and spatial bins, vii)

impact of the strongest bins in weakened before the final `2 norm normalisation.

In principle, the SIFT descriptor quantifies coarsely the position, orientation, and rel-

ative strength of edges of an object captured in the patch, as illustrated in figure 1.2.

Other popular local image descriptors include Gabor Filters [Gabor, 1946, Vetterli,

1995], Histogram of Oriented Gradients [Dalal and Triggs, 2005] (HOG), Gradient Lo-

cation and Orientation Histogram [Mikolajczyk and Schmid, 2005] (GLOH), Geometric

Blur [Berg and Malik, 2001], Fast Local Descriptor for Dense Matching [Tola et al.,
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2008] (DAISY), Speed Up Robust Features [Bay et al., 2008] (SURF), Binary Robust

Independent Elementary Features [Calonder et al., 2010] (BRIEF), and many more.

Several extension of SIFT descriptor that work in various colour spaces also exist.

They were proposed and compared to colour histograms in [van de Sande et al., 2008].

Opponent SIFT is amongst the most robust colour descriptors. Also, descriptors that

capture texture such as Grey-level Co-occurrence Matrices [Haralick et al., 1973] and

Multi-resolution Rotation Invariant Local Binary Patterns [Ojala et al., 2002] (LBP)

are widely used in VCR, especially for Face Detection and Recognition. Moreover,

there exist numerous approaches to learning banks of filters on the raw pixels extracted

from image patches. These filters are learnt from image patches and often comprise

primitive corner-, line-, edge-, step-, and blob-like structures of various orientations.

They can express contents of image patches [Roth and Black, 2005, Lee et al., 2007].

To conclude, local image descriptors and their properties of invariance are studied in

depth in [Mikolajczyk and Schmid, 2005]. Moreover, a generic pipeline for customised

local image descriptors is proposed in [Winder and Brown, 2007]. A number of replace-

able components are suggested in their study and their best combination is determined.

Interest Point Detectors. The goal of such detectors is to provide a meaningful

sampling strategy to extract image patches from an image. Most popular corner detec-

tors include Harris Corner Detector [Harris and Stephens, 1988] and Smallest Univalue

Segment Assimilating Nucleus (SUSAN) proposed in [Smith and Brady, 1997]. Other

detectors tend to extract blob-like features, e.g. Determinant of Hessian (DoH), Differ-

ence of Gaussian (DoG), Laplactian of Gaussian (LoG) [Bretzner and Lindeberg, 1996],

and based on them more recent implementations, e.g. SIFT detector [Lowe, 1999] (not

to confuse with the SIFT descriptor), Harris-Laplace, and Hessian-Laplace detectors

[Mikolajczyk et al., 2005]. These detectors can work at the selected spatial scale (uni-

scale) or across multiple spatial scales (multi-scale). The latter variant is very common

in VCR as the same objects often appear at various scales across collections of images.

In order to make detection invariant to affine changes, Harris and Hessian Affine Region

Detectors were also proposed in [Mikolajczyk et al., 2005]. Another group of region de-

tectors is based on an unsupervised image segmentation called Watershed. Maximally

Stable Extremal Regions (MSER) detector [Matas et al., 2002] selects coherent regions
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(a) Harris Affine (b) Hessian Affine

(c) MSER (d) dense sampling

Figure 1.3: Examples of regions delivered by (a) Harris Affine, (b) Hessian Affine, (c)

MSER keypoint detectors, (d) dense sampling (a single scale only).

whose appearance remains sufficiently stable (not changing) over a desired number of

consecutive thresholds applied to a given image (over intensity of pixels). Figure 1.3

illustrates regions obtained with Harris Affine, Hessian Affine, MSER detectors, as well

as the dense sampling strategy.

To conclude, interest point detectors and their quality are studied in depth in [Mikola-

jczyk et al., 2005]. Colour-based interest points have been also proposed and studied

in depth in [Stöttinger et al., 2012]. Moreover, several sampling strategies (keypoints

as well as the dense sampling strategy) are evaluated specifically in the classification

scenario [Nowak et al., 2006]. Their study advocates the dense sampling approach.
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1.2.2 Image Signatures

Local image descriptors can characterise coarsely either the entire objects, the parts

of objects, or the objects with fragmented surroundings depending on the scales and

locations of the extracted image patches. However, simply classifying every descriptor

with a classifier is an inefficient strategy as: i) such task is computationally formidable

given thousands of descriptors in every image, ii) reliable object recognition often re-

quires capturing the visual context of objects. With regards to remark (ii), if a road

appears in the image context, it is likely that a car will be observed as well. If the

sky appears in the image context, one can likely see a plane or a bird or the sun as

well, etc. Similarly, various object parts may constitute the evidence of an object. For

instance, if an image contains a shoe (represented by a local image descriptor), as well

as a leg (another descriptor), this increases belief that the image depicts a human.

Furthermore, objects of interest can appear at various positions and scales in various

images. This means that often only a few of the local image descriptors from an image

describe a desired object. The global scene recognition approaches are ineffective for

this task as, being designed to capture only the coarse gist of an entire scene, they are

not sensitive enough to the local appearances. Therefore, a trade-off between the local

and global architectures seems to be the optimal strategy in the classification problems.

Bag-of-Words [Sivic and Zisserman, 2003, Csurka et al., 2004] (BoW) is a popular ap-

proach which transforms local image descriptors [Lowe, 1999, Mikolajczyk and Schmid,

2005, van de Sande et al., 2008] into image representations that are used in scene match-

ing and classification. Its first implementations were associated with object retrieval

and scene matching [Sivic and Zisserman, 2003], as well as object recognition [Csurka

et al., 2004]. The BoW approach has undergone significant changes over recent years

that will be addressed in further chapters of this thesis. A baseline BoW approach [Sivic

and Zisserman, 2003] employs k-means clustering of local descriptors from a training

dataset and assigning each descriptor to the nearest cluster. This is often referred to

as Hard Quantisation or Hard Assignment. The clustering and assignment steps often

vary between different models of BoW and are widely referred to as dictionary learning

and mid-level coding, respectively. A histogram representing the image is obtained by
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(a) keypoints (b) descriptors (c) k-means clustering (d) histograms

Figure 1.4: The basic Bag-of-Words model. (a) Extraction of the keypoints from

the dataset (dense sampling may be applied instead). (b) Computation of the local

descriptors. (c) K-means clustering of the descriptors in the high dimensional descriptor

space. Often, this step employs more efficient dictionary learning (d) Assignment of the

descriptors from individual images to the nearest clusters. This step typically results

in frequency histograms of such assignments (one per image). However, alternative

vectorial representations may be used.

counting the number of assignments per cluster. Averaging such counts by the number

of descriptors in the image results in so-called Average pooling [Csurka et al., 2004, van

Gemert et al., 2008, 2010]. Such an aggregation of assignments also varies between

different models of BoW and is widely referred to as the pooling step. An image repre-

sentation obtained in such a step is referred as the image signature. Investigations of

the coding and pooling steps constitute an important part of this thesis. To conclude

this section, figure 1.4 gives an overview of the steps involved in computation of the

basic BoW approach described above.

Spatial Pyramid Matching. An additional element of the BoW approach is Spatial

Pyramid Matching [Lazebnik et al., 2006] (SPM). It exploits the spatial bias in images

by expressing spatial relations between the local features at multiple levels of quantisa-

tion. Once the local descriptors are extracted from an image, they are deployed across

coarse-to-fine spatial windows that they fall into. Next, computations of the BoW

histograms follow for every spatial window respectively. The resulting histograms are

often additionally weighted. The coarser the level is the smaller the weight. When

histograms from any two images are intersected to determine their similarity, such a

weighting scheme results in a lesser impact of the features that are visually similar but
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(a) (b) (c)

(d) (e) (f )

Figure 1.5: Examples of the spatial bias for (a-c) sailing boats, and (d -f ) planes.

Note that the middle spatial windows tend to be the most occupied with objects from

the categories of interest.

spatially misaligned between these two images.

The underlying assumption of SPM is that objects of a specific class may be associated

with a set of spatial positions. These objects are more likely to appear at these positions

compared to other spatial locations. For instance, a plane, clouds, or the sun are likely

to appear in upper parts of images while pictures of humans tend to be aligned to

the middle in photographs. Such a bias is learnt from the dataset itself during the

classification process. Figure 1.5 provides examples of the spatial bias for two image

categories: sailing boats and planes. Note that the sailing boats and planes occupied

mostly the middle vertical and horizontal spatial windows in this example, respectively.

This thesis investigates various types of bias in images that will be discussed later.

Moreover, it proposes a robust alternative to the SPM scheme. By careful analysis of

interaction between various stages of BoW and SPM, it is illustrated that the remark-

able performance of SPM is due to additional factors beside the spatial bias.
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Figure 1.6: The operating principle of Spatial Pyramid Matching.

To conclude, figure 1.6 illustrates the operating principle of the SPM scheme with 1,

2×2, 3×1, and 1×3 spatial splits. Three levels of coarseness are used.

Feature Projections. For the global image descriptors, the obtained global repre-

sentations often require a projection step that takes into account the class names. As

global representations are highly dimensional, the projection step helps in retrieving

a low dimensional manifold that represents the desired classes more accurately in a

lower dimensional space. Such a manifold space is meant to provide a more mean-

ingful similarity metric between the projected representations. To conclude, various

dimensionality reduction approaches are compared in [Song and Dacheng, 2010]. Such

projections are also plausible for the BoW model. However, the manifold learning is

often performed in the coding step of BoW making projections somewhat redundant.

1.2.3 Image Classification

The role of a classifier is to learn how to separate several classes of interest in the fea-

ture space containing the image signatures (multidimensional vectors), and to reliably

predict the class labels for previously unseen images. The quality of a classifier depends

on how well it generalises from training to correctly classify the unseen instances. A

classifier performs the classification task on the image signatures or so-called kernel

matrix (or kernel for short). Depending on the classifier type (linear or non-linear),

a decision boundary separating two classes of features may be of linear or non-linear
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(a) (b) (c) (d)

Figure 1.7: Various classification problems. A linearly (a) separable and (b) insepa-

rable two class problem. (c) Non-linear classifier. (d) Multi-class classifier.

nature. This is illustrated in figures 1.7 (a, c). The linear decision boundary is often

unable to fully separate numerous samples from different classes as shown in figure

1.7 (b). The linear classifiers that employ kernels allow both linear and non-linear

classification if a non-linear kernel is employed. The latter case often leads to better

classification results. The linear classifiers that use the image signatures perform the

linear classification only. They may be less accurate but are very efficient computa-

tionally. Many classifiers are typically the binary classifiers as they distinguish between

two classes of interest (so-called two-class problem). This is shown in plots 1.7 (a-c).

Multi-class vs Multi-label. There exist fundamental differences between the data

labelling processes for the VCR datasets. Some sets contain only one kind of object

of interest per image. These sets are classified with so-called multi-class classifiers.

Datasets that contain many kinds of objects of interest per image are classified with

multi-label classifiers. The multi-class classification can be performed by several binary

classifiers. Each classifier is trained for one class against the rest (so-called one-vs-all

strategy). Then, the strongest responding classifier determines the class of an image.

Also, there exist explicitly designed multi-class classifiers (as opposed to the fusion of

binary classifiers) which take advantage of a constraint that only one class of objects

can appear in an image. Figure 1.7 (d) illustrates this. The multi-label classifiers also

often employ the one-vs-all strategy. Every class is trained against the rest, then, each

classifier specifies if a class that it was trained for has been observed in an image.
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Training, Validation, and Testing. The practical classification step consists of

training and validation of the model on the training and validation sets of image signa-

tures selected for this procedure. This way the classifier is trained and its parameters

are fine-tuned for the best performance. Consecutively, these training and validation

sets are merged together and training is performed on the resulting set given the pa-

rameters estimated during the validation step. Finally, testing on a previously unseen

testing set is performed in accordance with the best practice [Everingham et al., 2007].

Popular Classifiers. There exist many kinds of classifiers that can be used for this

final step, e.g. Support Vector Machine (SVM) proposed by [Cortes and Vapnik, 1995],

Linear Discriminant Analysis (LDA) proposed in [Fisher, 1936] and outlined in [Duda

et al., 2001], their kernelised versions such as SVM (dual form) and Kernel Fisher

Discriminant Analysis [Mika et al., 1999] (KDA) allowing non-linear classification due to

the kernel trick [Aizerman et al., 1964], the multi-class equivalent of LDA first proposed

in [Rao, 1948] and extended to the multi-class KDA based on Spectral Regression in

[Cai et al., 2007]. The family of classifiers also entails Naive Bayes Classifier [Domingos

and Pazzani, 1997], Quadratic Classifiers, Boosting [Schapire, 1990], Decision Trees

[Quinlan, 1986], Random Forests [Breiman, 2001], and many others.

In this thesis, SVM [Chang and Lin, 2011] and multi-class and multi-label KDA [Tahir

et al., 2009, 2010] classifier implementations are used. These classifiers are often com-

bined with either the linear or Radial Basis Function (RBF) kernels [Scholkopf et al.,

1997]. The exact classification arrangements are explained in every chapter for clarity.

1.2.4 Performance Measures

A binary classifier can output two types of predictions: i) binary class predictions

that indicate for every image if it contains any instances of the positive category, ii)

probabilistic scores (or ranking list) that reflect for every image the likelihood that it

includes at least one instance from the positive category.
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relevant

retrieved

not relevant

ranking list

P( )i

(a) (b)

Figure 1.8: Performance measures. (a) Accuracy is defined as the ratio of the retrieved

relevant positive to the relevant positive instances. (b) Average Precision requires the

ranking list with Precision denoted as P (i) and computed at cut-off i=1, 2, ...

The classification performance can be characterised by two measures:

Precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
(1.1)

Recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
(1.2)

For the visual categorisation problems, the relevant documents of class c ∈ C are defined

as images each containing at least one instance of class c. However, definitions of the

retrieved documents vary. Given cases (i) and (ii), the retrieved documents are: i)

images considered by the classifier to contain at least one instance of class c ∈ C, ii) all

images processed by the classifier.

Multi-class Problems. For the multi-class predictions, the classifier makes binary

decisions about the classes as defined in case (i). The Recall scores are computed

accordingly for every class c ∈ C. They are referred to as the Accuracy scores. One can

also define Accuracy corresponding to Recall as the number of images that are correctly

predicted by the classifier to contain instances of class c, divided by the number of

images each truly containing at least one instance of class c. This is illustrated in

figure 1.8 (a). The Accuracy score for the example in the plot is 3
6 . Moreover, if the

classifier was to label all images as containing instances of class c, the Accuracy score for

class c would amount to 1. This would be a bad indicator of the classification quality.

However, the Accuracy scores for classes c′ 6= c would amount to 0 in such a case. Thus,

Mean Accuracy is a single relevance score defined as the average of all Accuracy scores.

For simplicity, Mean Accuracy is referred to as accuracy in the following chapters.
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Multi-label Problems. Average Precision is a popular measure for multi-label prob-

lems. It takes into account both Recall and Precision. As the classifier is not required to

make any hard decisions for this measure, the order of the positive instances in the rank-

ing list determines how well the positive and negative instances in one-vs-all problem

can be linearly separated from each other in this list. If full separability is achievable,

the score is 1. Formally, Average Precision is defined as the area under Precision vs

Recall curve p(r) for case (ii), and computed for a given one-vs-all problem:

AP =

∫ 1

0
p(r)dr (1.3)

As datasets provide discrete instances of class c ∈ C (vs other instances), the integration

in formula (1.3) is replaced with a finite sum over ranked images:

AP =

|Ic|∑
i=1

P (i)∆r(i) =

∑|Ic|
i=1 P (i) · Pos(i)

|{relevant documents}|
(1.4)

Variable i is the rank in sequence Ic of retrieved images while |Ic| is the number of

all retrieved images such that |Ic| = |I|, where I is the entire image set. Symbol P (i)

denotes Precision computed at a cut-off i in sequence Ic. Symbol ∆r(i) is a change in

Recall from step i− 1 to i that can be also defined as ∆r(i) = Pos(i)

|{relevant documents}|
.

Pos(i) = 1 if the retrieved image at position i in sequence Ic contains at least one

instance of class c ∈ C (a true positive), Pos(i)=0 otherwise. Figure 1.8 (b) illustrates

an arbitrary ranking list with the corresponding values of P (i). Average Precision for

this example amounts to
(

1
1 + 2

2 + 3
4 + 4

6 + 5
9

)
/5 ≈ 0.794.

Furthermore, Mean Average Precision (MAP) is a single relevance score defined as

the average over all Average Precision scores (one per class). This measure is used

in this thesis for the multi-label problems. For reference, the above measures are

comprehensively described in [Zhu, 2004].

1.3 Challenges

Visual categorisation faces a number of challenges due to the high dimensional nature

of images, small amounts of training samples (labelling is time-consuming), and varying
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(a) (b)

(c) (d)

(e) (f )

Figure 1.9: Illustration of challenges in VCR. (a) Rotation and scale changes are cir-

cled with solid lines. Background clutter is represented by a dashed circle. (b) Extreme

scale change and undesired intra-class variability are circled with solid lines. Partial

occlusion is shown with a dashed ellipse. (c) Viewpoint changes. (d) Compression

artifacts. (e) Obstructive inter-class similarity between sheep and a Chow Chow dog.

(f ) Areas spanned by repetitive visual patterns of the same types vary in their sizes.

difficulty of visual concepts. Below, the notorious challenges are briefed in a list while

their examples are illustrated in figure 1.9:

• Geometric and Photometric Image Transformations. Objects undergo various

transformations such as rotation, scale and viewpoint changes, translation, bright-

ness, blur, and colour changes. Acquisition noise, lens distortions, and compres-

sion artifacts also pose problems. These transformations result in large variations

between the signals expressed by the image representations. Thus, mathemat-

ical algorithms face difficulty in generalising given such signals, e.g. a vehicle

occupying an entire image differs from a car in a background (a few pixels wide).
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• Background Clutter, Occlusions, and Truncation. Objects often appear in various

backgrounds with substantial clutter. These undesired stimuli can trick detec-

tors into detecting objects that are not in the image due to similarities of the

appearances. Moreover, clutter can occlude objects. While humans cope with

occlusions by understanding the context and anatomy of objects, mathematical

models are still short of efficient mechanisms coping with such a phenomenon.

Similarly, digital images often contain objects that are truncated. This poses

similar challenges to occlusions.

• Varying Context. Image background often contributes to the scene understanding.

For instance, roads and buildings increase likelihood of presence of cars. A similar

is true for the foregrounds, e.g. a wheel may suggest appearance of other visible

parts of a vehicle. However, with strong variations in the context that can happen

naturally, recognition algorithms often fail.

• Depictive Styles. Images may differ in their depictive styles which determine

whether an object is photographed or painted or drawn. Depending on style,

signals captured in the image representations may differ significantly.

• Intra-class Variability. Intra-class variability is concerned with large variations

between objects (or visual concepts) of the same class. For instance, Chow Chow,

Bull Terrier, and Airedale Terrier dogs are visually quite different. Also, a jumbo

jet and the Su-47 fighter planes are unlike each other. Despite their differences,

the image representations have to be invariant enough to the variations and the

classifier has to generalise well to mitigate the differences at the recognition stage.

• Inter-class Variability. Inter-class variability is concerned with small variations

between objects (or visual concepts) from different classes. Objects (or visual

concepts) from several different classes may be more visually similar to each other

than to objects (or visual concepts) representing the same category. For instance,

a Chow Chow dog may be easily confused with a sheep due to their white woolly

appearances and similar body postures. In fact, cats and dogs represent two

categories that are often confused with each other as visual differences between

these two species are very subtle from the algorithmic point of view.
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• Computational Complexity. Algorithms have to cope with the above challenges

to provide a reliable image categorisation. The price for dealing with complex

visual scenes and difficult object taxonomies is a large computational complexity.

Although the above challenges have been addressed to a certain degree in the variety

of studies referenced in this thesis, they nonetheless are active topics of research in

VCR. Moreover, there exist yet another known challenge in visual categorisation, only

recently brought to attention in BoW, that is of paramount interest to this thesis:

• Repetitive Visual Stimuli. Repetitive visual patterns of any given appearance

are present in varying quantities across images. For instance, areas spanned

by the natural landscapes vary. Grasses, rocks, sand, reservoirs of water, the

sky, foliage, and other vegetation, all can appear in unpredictable quantities in

images. This is illustrated in figure 1.9 (f). Similar holds true for the urban

scenery. Brick walls, windows, tarmac, cobbles, and pavements can span across

unpredictable areas. Moreover, this also holds true for images that are taken in

other uncontrolled environments. As it is explained below, this unpredictability

introduces a harmful variance into the image signatures produced by the baseline

BoW model from section 1.2.2.

Baseline BoW assumes that each visual word in a visual dictionary is associated with

a visual appearance of some kind. Moreover, this model counts occurrences of visual

words for any given type that are voted for by the local descriptors extracted from an

image. If such descriptors are extracted numerous times from a repetitive visual pattern

like a field of grass due to the dense sampling strategy or an interest point detector firing

multiple keypoints, a visual word representing patch of grass will be voted for multiple

times. Therefore, such a phenomenon introduces large variances in the counts of visual

words. This thesis proposes a number of novel image representations with the goal of

limiting this undesired phenomenon, as explained next in the list of contributions.
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1.4 Publications

This thesis builds upon publications prepared in the course of my PhD studies:

• P. Koniusz and K. Mikolajczyk. Segmentation Based Interest Points and Evalu-

ation of Unsupervised Image Segmentation Methods. BMVC, 2009

• P. Koniusz and K. Mikolajczyk. On a Quest for Image Descriptors Based on

Unsupervised Segmentation Maps. ICPR, 0:762–765, 2010. ISSN 1051-4651

• P. Koniusz and K. Mikolajczyk. Soft Assignment of Visual Words as Linear

Coordinate Coding and Optimisation of its Reconstruction Error. ICIP, 2011a

• P. Koniusz and K. Mikolajczyk. Spatial Coordinate Coding to Reduce Histogram

Representations, Dominant Angle and Colour Pyramid Match. ICIP, 2011b

• P. Koniusz, F. Yan, and K. Mikolajczyk. Comparison of Mid-Level Feature Coding

Approaches And Pooling Strategies in Visual Concept Detection. CVIU, 2012.

ISSN 1077-3142. doi: 10.1016/j.cviu.2012.10.010

• P. Koniusz, F. Yan, P. Gosselin, and K. Mikolajczyk. Higher-order Occurrence

Pooling on Mid- and Low-level Features: Visual Concept Detection. PAMI, 2013.

(submitted)

• M. Barnard, P. Koniusz, W. Wang, J. Kittler, S. M. Naqvi, and J. Chambers. A

Robust Approach to Joint Audio-Visual Tracking Based on Bags of Visual Words.

TMM, 2013. (submitted)

• M. A. Tahir, F. Yan, P. Koniusz, M. Awais, M. Barnard, K. Mikolajczyk, and

J. Kittler. A Robust and Scalable Visual Category and Action Recognition System

using Kernel Discriminant Analysis with Spectral Regression. TMM, 2012

Other achievements relevant to this thesis include:

• First prize for SURREY MK KDA system that scored the highest MAP of 62.15%

amongst competing approaches in the PASCAL VOC2010 Action Classification

Teaser Challenge [Everingham et al., 2010].

• An Outstanding Reviewer Award for BMVC 2012 [Bowden et al., 2012].
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descriptors descriptor codingkeypoints

dictionary learning

(a) (b) (c)

feature pooling
pyramid
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the image
signature

(d) (e) (f)

Figure 1.10: Various steps constituting on Bag-of-Words. We investigate (a) keypoint

design, (b) descriptor design, (c) various coding techniques, (d) pyramid matching

schemes, (e) mid-level feature pooling. (f) The image signatures are fed to a classifier.

1.5 Contributions and Thesis Structure

In this thesis, a number of contributions are made with respect to the design of novel

and robust image representations for visual categorisation. The building blocks of the

BoW model in figure 1.10 are investigated. This model represents a more detailed

diagram of basic BoW from figure 1.4. The chapters follow the illustrated steps from

left to right and address the following aspects: the keypoint design (a), the descriptor

design (b), various coding techniques (c), alternative pyramid matching schemes (d),

improved pooling approaches (e) that result in the image signatures (f). The detailed

role of the above steps beyond the introduction from section 1.2 will be explained in

the corresponding chapters. The proposed approaches lead to improvements over the

state-of-the-art systems which are reported in evaluations at the end of every chapter.

This thesis is structured around the following list of contributions:
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I. An interest point detector based on the unsupervised image segmentation maps is

proposed. This is a corner detector that operates on the junctions along bound-

aries between segments. Therefore, the keypoints from uniform uninformative

parts of visual scenes are suppressed and the main attention is given to the visu-

ally relevant regions. Moreover, the corners of segments are evaluated and found

to be repeatable features in segmentation maps. Therefore, an evaluation of the

unsupervised image segmentations is proposed based on the corner features. Their

utility in visual categorisation is also evaluated. The results on BoW with the lo-

cal image descriptors extracted in this manner show a promising improvement.

This work was published in [Koniusz and Mikolajczyk, 2009].

Chapter 2 outlines the proposed interest point detector and provides necessary

evaluations for the employed segmentation algorithms.

II. Segmentation-based image descriptors are proposed for Visual Object Category

Recognition. In contrast to commonly used interest points, the proposed de-

scriptors are extracted from pairs of adjacent regions given by an unsupervised

segmentation method. In this way, semi-local structural information from images

is exploited. The segments are used as spatial bins of descriptors. This elimi-

nates multiple contributions form large uniform regions. Image statistics based

on gradient, colour, and region shape are extracted over corresponding regions in

images. The proposed descriptors are evaluated on standard recognition bench-

marks. Results show they outperform state-of-the-art reference descriptors with

5.6× less data. This work was published in [Koniusz and Mikolajczyk, 2010].

Chapter 3 introduces the segmentation-based image descriptors as well as the

performed experiments.

III. A highly popular technique for coding the local image descriptors in the BoW

model, called Visual Word Uncertainty (VWU) or Soft Assignment (SA) that

was proposed in [van Gemert et al., 2010], is combined with Linear Coordinate

Coding (LCC) studied in [Yu et al., 2009]. As a contribution, it is shown that

SA, an approach derived from Gaussian Mixture Model (GMM), can act as an

approximation to the LCC methods by combining SA with the quantisation loss
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used by the LCC coders. An optimisation is performed over the smoothing factor

of the SA model. Minimising the quantisation loss is demonstrated to correlate

well with the best classification performance. This work was published in [Koniusz

and Mikolajczyk, 2011a].

Chapter 4 demonstrates that the SA coding approach can act as an approximation

to the LCC methods.

IV. An alternative approach to SPM that introduces spatial information to the BoW

model, called Spatial Coordinate Coding (SCC), is proposed. It reduces the sizes

of image signatures tenfold compared to SPM and decreases computational and

memory requirements. Specifically, spatial locations of image patches are added

at the descriptor level. Hybrids between the proposed model and SPM are also

studied. Moreover, Pyramid Matching is successfully applied to measurements

such as dominant orientations of edges and colour, resulting in Dominant Angle

Pyramid Matching (DoPM) and Colour Pyramid Matching (CoPM) approaches.

This work was published in [Koniusz and Mikolajczyk, 2011b].

Chapter 5 introduces the SCC, DoPM, and CoPM approaches.

V. In the BoW model, the local descriptors are extracted from images and expressed

as vectors representing visual word occurrences, referred to as mid-level features.

Various methods for generating mid-level features, including Soft Assignment,

Locality-constrained Linear Coding (LLC), and Sparse Coding (SC) are reviewed.

A fast coder called Approximate Locality-constrained Soft Assignment (LcSA) is

proposed, its quantisation loss is optimised, and its relation to LLC is shown.

Moreover, various pooling methods that aggregate mid-level features into vectors

representing images are investigated, including Average pooling, Max-pooling,

and a family of likelihood inspired operators. Interactions between both coding

schemes and pooling methods are demonstrated.

Furthermore, a generalisation of the investigated pooling methods that accounts

for the descriptor interdependence is proposed and an improved pooling that ad-

dresses noise effects in mid-level features is introduced. An efficient approach for

coding is developed. This work was published in [Koniusz et al., 2012].
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Chapter 6 introduces SA, SC, and LLC coding, as well as the proposed LcSA

coder. The pooling operators and the proposed pooling improvements are in-

troduced. Finally, extensive evaluations for the mid-level coding and pooling

approaches are provided.

VI. In the BoW model, the statistics are extracted from mid-level features with a pool-

ing operator. As pooling typically aggregates only occurrences of visual words rep-

resented by coefficients of each mid-level feature vector, it produces the first-order

statistics only. Therefore, to employ the more informative second- or higher-

order statistics, aggregation over co-occurrences or higher-order occurrences of

visual words in mid-level features. Moreover, a relevant derivation based on ker-

nel linearisation is proposed and a generalisation to various pooling operators is

exploited: Average, Max-pooling, Analytical pooling, and a highly effective trade-

off between Max-pooling and Analytical pooling. For bi- and multi-modal coding

with two or more coders, an extension also based on kernel linearisation is derived.

Moreover, it is demonstrated by combining both the grey scale and colour mid-

level features that such a linearisation outperforms naive fusing schemes. An

explanation is given that the SPM scheme in BoW and other similar methods are

robust performers as, being special cases of the proposed method, they produce

the second- rather than first-order statistics. Moreover, a Residual Descriptor that

exploits the quantisation loss in coding is designed for the bi-modal extension.

Comparisons to state-of-the-art methods are provided. This work is presented in

[Koniusz et al., 2013].

Chapter 7 explains the proposed aggregation step over co-occurrences of visual

words in mid-level features called Second-order Occurrence Pooling. Higher or-

der statistics are also evaluated. An extension to bi- and multi-modal coding is

evaluated on the grey scale and colour features, as well as the Residual Descriptor.

Finally, chapter 8 concludes this work and reflects on ideas for the further research.



Chapter 2

Segmentation Based Interest

Points

This chapter investigates segmentation based interest points for matching and recog-

nition. We propose two simple methods for extracting features from the segmentation

maps, which focus on the boundaries and centres of the gravity of the segments. More-

over, our evaluations provide a new insight into suitability of the segmentation methods

for generating local features for image retrieval and recognition. Several segmentation

methods are evaluated and compared to state-of-the art interest point detectors using

the repeatability criteria as well as matching and recognition. In addition, we propose

to measure the robustness of segmentations by the repeatability of features extracted

from segments on images distorted by various geometric and photometric transforma-

tions. Typical evaluations quantify separability of foregrounds from backgrounds.

2.1 Introduction

One of the crucial issues in image retrieval or recognition is the extraction of salient

features. Segmentation methods seem to have great potential of delivering good features

as their main goal is to separate foreground objects from backgrounds. For instance, in

[Russel et al., 2006], multiple segmentations were used to find objects and their extent

in collections of images. The underlying assumption was that all similar objects across

29
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images give rise to segments alike, and those irrelevant appear dissimilar. Reminiscent

approaches were taken in [Malisiewicz and Efros, 2007]. Their work concluded that even

over-complete representations may be insufficient to achieve satisfactory repeatability

of segmentation maps. Similar scenes affected by natural lighting conditions, angle of

view and scale result in different segmentation maps. Thus, partial matching was taken

into further investigation in [Hedau et al., 2008]. We argue that stability of produced

partitions is more important than unambiguous foreground vs background separation

for such applications. The approaches taken in [Russel et al., 2006, Malisiewicz and

Efros, 2007, Hedau et al., 2008] show that segmentation methods can be used in VCR.

This chapter reports on a set of tests which aimed at identifying what kinds of features

from general-purpose segmentation algorithms are stable. This enables further exploita-

tion of these stable parts to build reliable representations for image content retrieval or

classification systems. We are unaware of any previous evaluation that targets stability

of segmentations with the use of interest points and recognition, which makes this work

novel in these areas and contributes to the segmentation evaluation problem. Further-

more, it also contributes towards bridging the gap between the interest point detectors

and unsupervised segmentations. Along with a simple testing protocol, we propose

interest point detectors based on the segmentation maps that may be directly used in

many applications utilising interest points. An extensive evaluation demonstrates the

performance of these interest point detectors. This characterises the quality of differ-

ent segmentations. In contrast to the existing evaluations like [Ge et al., 2006, Martin

et al., 2001, Arbelaez et al., 2007], we quantify the performance of segmentation meth-

ods in terms of suitability for recognition with means of the local descriptors. Now, a

brief review of evaluation benchmarks for the interest point detectors and unsupervised

image segmentations will be given, respectively.

2.1.1 Benchmarks for Interest Point Detectors

An introduction to the state-of-the-art interest point detectors is provided in section

1.2.1. A variety of such methods are based on the corner, blob, region, or saliency

driven detection on the contour-, intensity-, or parametrisation-based representations of



2.1. Introduction 31

images. Single- and multi-scale, as well as affine extensions are popular. An exhaustive

survey of state-of-the-art keypoint detectors can be found in [Mikolajczyk et al., 2005,

Tuytelaars and Mikolajczyk, 2008]. The interest points are typically characterised in

terms of repeatability and invariance to different geometric and photometric changes. A

very popular testing approach is based on the repeatability of detected features between

the reference and transformed images that are related by a homography matrix. The

repeatability is a relative measure counting the matched features to the total number of

detected features. The keypoints that are matched given an image transformation are

known as the correspondences. One can argue whether detectors that produce highly

repetitive keypoints and small counts of correspondences have any practical use in visual

categorisation. In contrast, the dense sampling strategy offers an excellent coverage of

scenes in images. However, dense sampling combined with the local image descriptors

results in a high number of mismatches between images for the Nearest Neighbour (NN)

matching strategy. Hessian and Harris affine detectors, as well as MSER [Matas et al.,

2002], are the best performing detectors according to [Mikolajczyk et al., 2005]. Other

benchmarks of the interest point detectors employ:

• The ground-truth verification that quantifies missed features and false positives.

• The visual inspection [Lopez et al., 1999] with a set of visual quality criteria.

• The localisation accuracy [Heyden and Rohr, 1996] to determine how accurate

are coordinates of keypoints given two images related by a homography. Such a

criterion is somewhat complementary to the overlap measure [Mikolajczyk et al.,

2005] that counts matched features that overlap with each other at least partially.

• The information content criterion introduced in [Schmid et al., 2000]. It quantifies

how distinctive are the local image descriptors extracted at any given keypoint

location, compared to the rest of such extracted descriptors.

2.1.2 Benchmarks for Unsupervised Segmentations

According to a recent survey on quality of unsupervised segmentations [Ge et al., 2006],

the most robust approaches are Mean Shift [Comaniciu and Meer, 2002, 2003] (MS), Ef-
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ficient Graph-Based Image Segmentation [Felzenszwalb and Huttenlocher, 2005] (EGO),

and Normalised Cuts [Shi and Malik, 2002, Cour et al., 2004] (NC). The results in their

benchmark were obtained on a dataset of 1023 images by evaluating so-called Upper-

Bound Performance [Ge et al., 2006] gauging how well resulting segments adhered to

the contours separating unambiguously defined ground truth foregrounds from back-

grounds. This criterion appeared to be biased towards overly small structures but

worked well for extremely large segments. Combined performance of segmentations

was estimated and their complementary nature emphasised. The dataset from their

studies contains the grey scale images at two resolutions: 80×80 and 200×200 pixels.

Another benchmark proposed in [Martin et al., 2001] evaluates how well segments

adhere to the regions from multiple maps annotated by various human subjects. Such

maps may exhibit different levels of refinement, e.g. an outline of a head, eyes, mouth,

hairline represent a refinement of a head. This is a paradigm shift in the scoring

criterion from a single to multiple acceptable segmentations per object, respectively.

Their dataset consists of 12K manually annotated segmentations of 1K images from

Corel dataset [Arbelaez et al., 2007]. Their evaluation builds on Local Refinement

Error which estimates how many pixels belong to a given ground truth region R in

segmentation map S1 and do not belong to the corresponding region R in segmentation

map S2, all normalised by the total number of pixels in region R of map S1. Moreover,

Global Consistency Error expects that refinements of regions Rn can take place either

in map S1 or S2 (not in both). Local Consistency Error allows mixed refinements, some

taking place in map S1, other in S2. These measures result in low errors if one of the

two compared segmentations is just a refinement or generalisation of the other map.

Precision-recall curves given a measure of matched pixels from boundaries between two

segmentations were applied in [Estrada and Jepson, 2005]. The best performers were:

SE Min-Cut, Canny Edge Detector, Mean Shift, Local Variation, and Normalised Cuts.

Lastly, recent survey proposed in [Zhang et al., 2008] reviewed various benchmarks for

evaluating segmentations and compared their pros and cons. It was pointed out that

these benchmarks are reliable for specific segmentation methods they were designed to

work with. The objectivity of such benchmarks was questionable otherwise.
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2.2 Proposed Interest Point Detectors

This section briefly discusses the investigated segmentation approaches and then presents

the methods for extracting local features from their segmentation maps.

2.2.1 Unsupervised Segmentation Methods

This study follows the findings of [Ge et al., 2006] and focuses on measuring performance

of Efficient Graph-Based Image Segmentation (EGO), Mean Shift (MS), Watershed

(WA), and Normalised Cuts (NC) in terms of their stability. Figure 2.1 provides

illustrations for the described below segmentation algorithms.

EGO [Felzenszwalb and Huttenlocher, 2005] is a graph-based technique where all ver-

tices represent pixel coordinates of an image and edges represent a similarity measure

between neighbouring vertices by the difference of the colour channels. This method

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2.1: Example images (a, f, k) with the corresponding segmentation maps. (b)

An EGO segmentation map approximated with polygons. (Top) Results of EGO for

over-, well-, and under-segmented sets (c-e). (Middle) Segmentation maps from the

EGO, MS, NC, and WA methods (g-j). (Bottom) More maps for these methods (l-o).
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employs the bottom-up merging strategy based on a pair-wise region comparison.

MS [Comaniciu and Meer, 2002] is based on a connectedness criterion. Image pixels are

considered as vectors in 5D space of spatial and colour coordinates. A centroid-based

mode detection is employed and the coordinates are ascribed to the modes. A recursive

fusion of the basins of attraction merges the modes located within a certain radius.

NC [Shi and Malik, 2002] is also based on a graph of vertices and edges representing

pixel coordinates and their similarities. Such a a graph stores N × (width × height)2

bytes of data. N represents the size of the weight coefficients (given in bytes). Image

partitioning is performed by a cut between two disjoint sets of vertices which optimise

the normalised cost criterion. We modified the segmentation process to overcome the

complexity issues due to which images larger than 200×200 pixels cannot be easily

handled. Moreover, the performance of the original implementation tended to degrade

in presence of scale and affine changes. Therefore, larger images were split into a set of

half-overlapping sub-windows. The resulting segments from over-segmented maps were

merged by using only those non adjacent to the boundaries of sub-windows to avoid

artifacts. Note that the segments adjacent to the boundary of a sub-window have their

undistorted segment counterparts in another shifted sub-window. A merging strategy

similar to the WA post-processing described further in the text was applied. This gave

satisfactory segmentation results and significantly reduced the processing time.

WA [Ibanez et al., 2005] segmentation acts on the image luminance or colour maps and

uses the gradient descent to seek for local minima. Thus, the pixels are attracted to

the minima within a given basin of attraction. This method benefits from combining it

with an anisotropic filtering introduced in [Perona and Malik, 1990]. We introduced an

additional post-processing step by sorting all segments in the ascending order by size

and merging first K percent of adjacent small segments based on their similarity.

2.2.2 Detection of Interest Points from Segmentation Maps

Inspired by the evaluation of the affine region detectors [Mikolajczyk et al., 2005], this

study focused on two kinds of keypoints locating potentially salient parts of segments.

Moreover, three different interest point detectors were devised.
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Ellipses inscribed in the segments are potentially repeatable features. Estimation

of centres and fitting the ellipses can be performed on either contour coordinates or

over the whole area. We found that ellipses fitted to the areas of segments are more

repeatable than contour-based variants, as the segments often suffer from partial spilling

into thin branch-like noisy structures under geometric and photometric changes.

Corners located on the boundaries between regions are salient features. They help

overcome the structural noise of segmentations as partial spilling of segments affects

only a fraction of such corners. The scale-space theory and the curvature measure

researched in [Mokhatarian et al., 1996] were applied to contours extracted from seg-

ments. Therefore, the maximally concave and convex points were extracted from the

contours. This method is illustrated in figure 2.2. In more detail, the contour-based

interest point detector extracts the spatial coordinates from segments and normalises

them to contain N=2000 samples. This results in a vector of coordinates per segment:

[x y] =

 x1, ..., xN

y1, ..., yN

T (2.1)

(a) (b)

Figure 2.2: (a) A T-shaped segment, its contour, and consecutive contours resulting

from coordinate blurring, and the extreme curvature points tracked over the scale-space.

The maximally concave and convex points are in blue and green. (b) The maximally

concave and convex points as a function of the contour index and the blurring step.



36 Chapter 2. Segmentation Based Interest Points

The scale-space scheme is applied to vectors x and y. For this purpose, two convolutions

with a Gaussian mask are applied to x and y given a desired standard deviation σ.

These operations are performed with the modulo arithmetic. Such a blurring results in

smoothing and shrinkage of contours. For these experiments, standard deviations were

set to σ=5, 10, ..., 200, resulting in 40 blurring steps. The curvature measure is then

applied to each of smoothed contours represented by vectors xσ and yσ:

kσ(xσ,yσ) =
x′σy

′′
σ − y′σx′′σ

[(x′σ)2 + (y′σ)2]3/2
(2.2)

The first and second derivatives are denoted as ′ and ′′. Note that the operations of

raising to the power of 2 and 3/2 are element-wise. Values of such a curvature measure

such that k > 0 and k < 0 indicate the convex and concave points on the contour,

respectively. Vector k is sought for its local maxima and minima. Those persisting

over scale-space are the most convex and concave corners, respectively. Therefore, the

local extrema are back-traced within an arbitrarily chosen neighbourhood applied to

kσ over several consecutive blurring steps. A rank of the resulting points is created

for each segment and only the top 7% corners are retained. Moreover, corners from all

segments are appended to an output list and only 1.5 to 7% of the most convex and

concave points are retained per image. Therefore, the count of corners is only about

33% higher than the count of segments.

SUSAN detector [Smith and Brady, 1997] praised for its efficiency is well tailored to

detect corners and junctions on segment boundaries. We propose to apply this corner

detection approach to region detectors such as segmentations. Figure 2.3 introduces a

block diagram of the proposed solution. During the first pass through a segmentation

map, a 3×3 mask is applied to detect boundaries between at least two segments and

reject uniform areas. Next, a circular mask of an arbitrary radius r1 is applied and a

simple count of the area covered underneath is performed for each segment, respectively.

Figure 2.3: Extraction of interest points from segments with SUSAN.
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The minimum area amongst segments underneath the circular mask is stored into a new

map. If there is no boundary between segments, the default value amounts to dπr1e.

For these experiments, r1 = 9 was used. This ensured a good trade-off between the

extremely small and large scales of observation. The resulting map is then convolved

with a Gaussian kernel of σ = 1.0 prior to the search for minima, followed by the

non-minima suppression using another circular mask of radius r2 = 3. Moreover, the

top 7% percent of the most relevant keypoints are retained. This step also constraints

the detector to preserve between 4 and 12 corners per segment. As it is demonstrated

later, such an approach performs equally well as the heavy duty curvature-based corner

detector outlined above. Moreover, this approach is extremely fast due to its simplicity.

2.2.3 Discussion on Boundary and Centre Features

The investigated segmentation methods result in disjoint segments that cover the entire

area of images. Thus, the affine regions retrieved by fitting ellipses into the segments

provide good coverage of the content in images. By contrast, other interest point de-

tectors often provide many features in some areas and none in others. Moreover, the

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 2.4: (Top) An image with (b) an under-, (c) well-, and (d) over-segmented tire

and the detected corners. (Bottom) The results of segmentation (f) before and (g) after

applying blur, as well as matched (h) ellipses and (i) corners (see the text).
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segment-based features can capture contextually meaningful parts of the objects, e.g.

cars, wheels, windows, limbs, etc. If the segmentation approaches could produce repet-

itive results, the features based on such segmentations would also be very repetitive.

However, the entire segments tend to suffer from either over- or under-segmentation.

Therefore, corners on the boundaries of segments are proposed as more stable features.

Figure 2.4 (top) illustrates a tire of a bike along with the detected corners. Although

the tire appears to be segmented out well only in the well-segmented result, there are

correctly matched corners (yellow circles) amongst all three segmentations, and only a

few of corners remain unmatched (dotted circles). This highlights the repetitive nature

of the boundary based keypoints. By contrast, ellipse fitting can be affected by the

structural noise that usually occurs at one or more boundaries of a segment.

Figure 2.4 (bottom) shows that given a small blur distortion, two segmentations differ

only slightly. Thus, all segments between these two segmentations are matched well

by using the ellipses. This is illustrated in plot 2.4 (h) by the overlapping yellow and

black ellipses. However, some corners are unmatched in plot 2.4 (i).This is partially

due to undetected corners, as well as different matching criteria for both types of such

features that will be described next.

To quantify these effects, two complementary measures based on the ground-truth

homography H are employed. The region overlap proposed in [Mikolajczyk et al.,

2005] is defined as the ratio of intersection to union of the reference region Rµr and the

projected region Rµp :

εo = 1−
|Rµr ∩RHTµpH |
|Rµr ∪RHTµpH |

(2.3)

This measure is used to evaluate the centre-based regions (ellipses) by the percentage of

correspondences for which εo≤0.3. Region Rµr of segmentation S1 is said to correspond

to region Rµp of segmentation S2 (related by H) only if the overlap error criterion is

met. The repeatability is defined as the ratio of the total number of correspondences to

the minimum number of regions min(|S1|, |S2|) shared between the two segmentation

maps S1 and S2, and related by H.

Alternatively, for the boundary-based points (corners, SUSAN), a criterion based on

the distance between an interest point and its nearest projected correspondence is used.
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Figure 2.5: Illustration of (left) segment- and (right) boundary-based features (in

yellow) in the reference image together with their correspondences (in black) projected

from another image.

The correspondences are considered valid if εn≤ 4 pixels. This measure is referred to

as Nearest Neighbour (NN).

The overlap based repeatability [Mikolajczyk et al., 2005] helps us examine to what

degree the segments of a chosen segmentation approach are preserved over a range of

image transformations. The NN repeatability measure [Schmid et al., 2000] is applied

to quantify the accuracy of segment boundaries. Figure 2.5 visualises the overlap (left)

and the distance-based (right) correspondences.

2.3 Evaluations and Results

This section describes experiments on segmentation-based features. We first discuss our

experimental setup and then present the results for the repeatability test, matching of

descriptors, complementarity of feature points, and visual categorisation.

2.3.1 Experimental Setup

We exploited a set of well-known test images from [Mikolajczyk et al., 2005]. Each

image sequence consists of 6 images with gradually increasing geometric or photomet-

ric transformations: bike/blur, boat/scale-rotation, car/illumination, graffiti/affine,
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house/JPEG compression, bark/zoom-rotation, tree/blur, wall/affine. These trans-

formations reflect well phenomena taking place during the image acquisition. The

availability of the homography ground-truth makes this set useful in such quantitative

evaluations. The resolution of images varies from 800×640 to 1000×700 pixels.

According to [Ge et al., 2006], the optimal performance of general-purpose segmenta-

tions was achievable if between 10 and 80 segments were produced for 200×200 pixel

images. However, it is unclear how segmentations can be compared provided a wide

range of their tweaking parameters. As the scale and numbers of objects are not fixed

across images, enforcing the arbitrary number of segments does not guarantee they will

delineate objects well. To address this issue, we adopted simple heuristics which use

EGO to generate three different control sets of segmentation maps at different scales of

observation, namely: over-, well-, and under-segmented. The remaining segmentation

methods were adjusted to fit to the control sets to their best abilities. In order to

avoid damaging effect of exact fitting, we built the histograms of segment sizes for all

tested methods and all images from the control sets. The segmentation parameters

which produced the most similar histograms to the control set according to χ2 distance

were selected. Finally, we used three sets of parameters for each method. Figure 2.1

(top) illustrates the results of EGO with the under-, well-, and over-segmented maps

in plots (c-e). Figure 2.1 (middle, bottom) shows all four segmentation methods on

the well-segmented set. A subset of the results is reported in this study. However, the

observations and conclusions are drawn from all results unless stated otherwise.

We follow the protocol from [Mikolajczyk et al., 2005] to evaluate the segment features

using the repeatability measures, as discussed in section 2.2.3. The results for the

state-of-the-art MSER and Hessian detectors operating at the fine scale were added

as a reference. We also report the percentage of correct matches obtained with SIFT

[Lowe, 1999] to evaluate the proposed features for their applicability in matching.

We additionally investigate the intra-detector complementarity. The correspondence

sets (repeatable points) for the methods under scrutiny were computed between test-

ing images 1− 2, 1− 3, ..., 1− 6. Further, the correspondence sets of the reference

MSER/Hessian detectors were extracted in the same manner. Subsequently, the cor-
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respondences from the testing sets having a significant overlap/NN proximity with the

correspondences in the referencing sets were removed. The ratio of the remaining corre-

spondences to their original count is called Exact Complementarity. If a tested detector

yields e.g. 90% in such a test, this indicates that the 90% of all repeatable points are

novel. The remaining 10% are repeatable but also present in a reference method.

Another measure called Relaxed Complementarity differs in a way that the keypoints

directly detected by a reference detector on images 2, 3, ..., 6 are used instead of the

correspondences from the reference sets 1−2, 1−3, ..., 1−6 when subtracting them from

the correspondences for the testing sets. Therefore, the keypoints which are detected

as novel with this measure are not implied as definitely repeatable.

Figure 2.6: The repeatability results for (left) bike, (middle) car, and (right) boat

with (top) the ellipse-based regions, (middle) the curvature-based corners, and (bottom)

SUSAN corners on the over-segmented set.
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Finally, we performed a recognition experiment on the PascalVOC08 dataset [Evering-

ham et al., 2008] to show the classification performance for visual categorisation.

2.3.2 Repeatability of Segmentation Methods

The repeatability of the segment-based features between the original and subsequently

distorted images is presented in figure 2.6 for the ellipses (top), the curvature-based

based corners (middle), and the SUSAN corners (bottom). The repeatability of the

MSER detector was amongst the highest. However, unlike MSER, the proposed ap-

proaches do not apply any selection of the most stable regions. A similar observation is

valid for the Hessian keypoints compared to the segment-based boundary features. The

WA segmentation performed consistently better than the remaining segmentations.

For the over-segmented set, WA was the winner with the repeatability of 42% for

graffiti, bike, car, and house. The second best was MS with 30% for bark, boat, tree,

and wall. Noticeably, WA behaved better on the structured scenes whilst MS was the

second best method scoring on average 33% repeatability. Furthermore, MS was the

clear winner for the natural scenes where WA scored rather low. EGO was the third

best method reaching roughly 23% for the structured and 20% for the natural sceneries.

NC scored 16% on average in all sequences.

For the well-segmented set, WA was comparable to MS on the structured images with

about 40% repeatability. MS again outperformed the other methods in the natural

scenes with the average of 32%. EGO yielded roughly 20% and NC only 16% across

all image categories. In terms of the number of correspondences on the structured

scenes, WA produced approximately 150 correspondences between the original and

first distorted image, and MS gave 190 correspondences. These numbers reached 200

for MS and 50 for WA on the natural scenes. Regarding the under-segmented set, MS

outperformed the other segmentations. For the natural scenes, all segmentations except

of EGO produced very few correspondences (� 50). Therefore, only small persistent

object structures were matched. A satisfactory amount of correspondences (≥ 50) was

produced for the structured scenes. WA provided the best results for most of the

sequences, followed by MS and EGO.
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The SUSAN corners proved repetitive in figure 2.6 (bottom), although they performed

significantly lower than the Hessian detector (HE). WA won again on the over-segmented

set (the structured scenes) with the maximum 58% repeatability. MS led in the nat-

ural scenes with the average repeatability of 41% where NC performed second best.

WA kept up the same trend for the well-segmented structured scenes with the average

repeatability of 54%. MS won consistently in all natural scenes reaching 41%. In case

of the over-segmented image set, roughly the same results were obtained for NC and

EGO. For the under-segmented set, the structured scenes processed by WA gave again

the best average repeatability of 52%. The biggest shift took place on the natural

under-segmented images where both EGO and NC were the winners with the similar

performance of 35% repeatability. They delivered around 500 and 100 correspondences.

Figure 2.7: The matching results on the over-segmented set for (top) ellipses, (middle)

SUSAN corners. The confusion (bottom) for (left) graffiti, (middle) car, and (right) tree.
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Concluding, the consistently best performer for the structured categories was WA fol-

lowed by MS which gave more stable results for the natural scenes. EGO performed on

average as the third best method for either scene type. The whole segments were less

repetitive than the boundary points due to the frequent spills of segments. WA and

MS upheld their stability for both the area- and boundary-based interest points. NC

segments produced less stable features. Moreover, figure 2.6 (middle, bottom) shows

that the curvature-based and SUSAN corner detectors produce the similar results.

2.3.3 Matching with SIFT

This section provides details on matching with the segmentation-based keypoints com-

bined with SIFT. Both region- and corner-based features are evaluated.

The results for the region-based interest points are displayed in figure 2.7 (top). The

attained scores are consistent with the repeatability test from section 2.3.2. Despite the

large performance gap if compared to MSER, these regions provide useful features which

are unique (WA and MS for the structured and natural scenes, respectively). The radii

of the fitted ellipses were increased by a factor of 3 to include the region boundaries into

the descriptors and made their sizes comparable to the MSER features. To conclude, the

discrepancy between detectors with an embedded stability criterion such as MSER and

segmentations suffering from the structural noise is apparent. However, we observed

that the stability criterion also suppresses potentially informative keypoints.

Matching with the SUSAN detector brought prime results presented in figure 2.7 (mid-

dle). WA outperformed HE by 15%, 20%, 22%, and 7%, for the car, graffiti, boat, and

bark sequences respectively. This is in contrast to the repeatability results in section

2.3.2 which showed HE as more repeatable than any combination of SUSAN with the

tested segmentations. For the descriptor based matching, SUSAN combined with either

of the segmentations outperformed HE for the graffiti, bark, tree, and the wall. Similar

trends emerged through other scales of observation. Note that the advantage of MS

over WA became clear in the natural scenes. We performed additional experiments to

clarify the inconsistency between the repeatability and the matching scores for HE.

Figure 2.7 (bottom) gives us an insight into how many points from a given image were
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matched with more than one point in the corresponding transformed image. HE pro-

duced many multi-matches for the same local structures in contrast to the segmentation

based points. This indicates much higher redundancy of the HE features. Also, we at-

tribute good performance of SUSAN to the segmentations which aim to capture the

entire distinct regions. We argue that these results are also due to the segmentation-

based corners which are very salient keypoints as they occur on the perimeter of two or

more areas considered dissimilar by a given segmentation. Therefore, descriptors are

rarely extracted from the visually uniform uninformative parts of images.

(a) (b)

(c) (d)

Figure 2.8: The inter-detector complementarity of the region-based/SUSAN detec-

tors with MSER/Hessian (the ratio of the novel repeatable to all repeatable points).

Bike/EC for (a) ellipses and (b) SUSAN. Boat/SUSAN given (c) EC and (d) RC.
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2.3.4 Inter-detector Repeatability

The following experiment provides details on the level of complementarity amongst

the examined region- and corner-based features from the segmentation maps compared

to the MSER/HE reference detectors, respectively. Highly complementary detectors

can be used together to improve performance of matching or recognition. Figure 2.8

presents the obtained complementarity results. The higher the Exact Complementar-

ity (EC) measure the more novel repeatable interest points are detected with respect

to the reference methods. For the region-based keypoints extracted from the well-

segmented images, EC amounted to 79%, 78%, 93%, and 83% for EGO, MS, NC, and

WA respectively. These are the average values concerning the testing image pairs 1−2.

The following consecutive testing pairs 1−3, ..., 1−6 yielded mostly monotonically in-

creasing scores. The stronger were the image distortions the more novel keypoints were

observed, although at a cost of fewer correspondences. The corner-based feature points

yielded the following scores: 91%, 92%, 93%, and 90% respectively. The Relaxed Com-

plementarity (RC) measure resulted in similar trends which were consistently lower by

between 2 and 4% on average. The RC measure suffers from a bias towards the non-

repeatable noise detected by a reference detector. Figure 2.8 (a, b) shows EC for bike

given the segment-based regions and the SUSAN corners, respectively. Figure 2.8 (c, d)

shows the exact and relaxed scores for boat. RC usually increases with EC. However,

the reference noise can affect these scores as shown in plot (d).

The complementarity score is expected to remain below 100%, as the most distinctive

features within an image should be extracted by any sort of a robust detector. To con-

clude, the segmentation-based methods introduce a significant number of the additional

complementary features to the state-of-the art interest point detectors.

2.3.5 Visual Object Category Recognition

In this experiment, the PascalVOC08 set [Everingham et al., 2008] was used to com-

pare the proposed corner features to MSER/Hessian points, all combined with the

SIFT descriptor. We applied Pyramid Match Kernel (PMK) approach with SVM from

[Grauman and Darrell, 2005] with 4 pyramid levels and the branch factor equal 20.
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features dense HE MSER MS WA WS WA+D

#regions per img - 1710 1677 1674 1609 1785 -

MAP (%) - 30.78 31.37 32.51 33.76 31.78 -

#regions per img 3690 2417 3886 3877 2905 2796 4108

MAP (%) 33.77 31.49 33.00 34.50 36.01 33.14 34.70

Table 2.1: The MAP results for the PascalVOC08 dataset.

The Pyramid Match Kernel (PMK) scheme was trained for 20 object classes on the

training set consisting of 2111 images, and tested on the validation set of 2221 images.

As a reference approach, we applied dense feature sampling on a regular grid with the

sampling interval of 8, 14, 20, and 26 pixels. This gave 3690 features on average per

image. The SIFT descriptors for both reference and segmentation-based interest points

were generated with patch radii of 16, 24, 32, and 40 pixels. Forcing the fourfold scales

upon MSER/HE also resulted in their best performance compared to the affine/scale

invariant configuration. The MSER, HE, MS, and WA corner features were tested

for two different numbers of descriptors per image. In addition, we show results for

the Watershed based detector without the anisotropic filter (WS) to demonstrate its

advantage. Table 2.1 shows the MAP scores computed over all 20 object categories.

The experiments performed in [Nowak et al., 2006] explain the poor performance of

MSER/HE in visual categorisation. WA gave the highest scores of 36.01% MAP. It

required 1.3× less features than in the case of dense sampling strategy (33.77% MAP).

With 2.3× less features, WA was still on a par with the reference approach. This clearly

demonstrates the saliency of the segmentation-based features in contrasts with [Nowak

et al., 2006]. To explain this, we combined the WA keypoints with dense sampling

(WA+D). The uniform image regions that resulted in large segments were not repre-

sented by the WA keypoints. Therefore, only these regions were supplemented by the

dense sampling keypoints. This resulted in a 1.3% drop in MAP. We conclude that

oversampling the uniform image regions can be detrimental to visual categorisation.

This experiment validates our observations from section 2.3.3 on a larger dataset. Note

that the obtained results are not directly comparable with the top scores for in the

literature as we used only one kernel and the validation data set for testing.
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2.4 Conclusions

The performed experiments investigate the features for matching and recognition which

were extracted from the segmentation maps. The best performer for the structured

scenes was WA while MS was second best in this category and the best for the natural

images (frequent textures). These two methods were followed by EGO yielding slightly

lower repeatability scores. The region-based interest points proved fairly stable, though

such detectors would benefit from a selection scheme based on some stability measure

similar to the one applied in MSER.

The junctions of segments were proved as very stable features with means of SUSAN.

Even in case of poor region-related performance (e.g. under-segmentation), EGO still

yielded good results when matching with SIFT. Again, WA and MS turned out to

be the two most stable segmentations. It emerged that the interest points based on

strong curvature of boundaries between regions are more suitable for both matching and

recognition than simple blob-based features. It seems that the repeatability, matching

and recognition benefit from the well- and over-segmentation strategies since they pro-

duce higher numbers of stable features. Although using the information carried by the

segmentation maps may seem a daunting task due to their structural noise, they were

demonstrated to benefit visual categorisation by focusing on salient image structures

and suppressing keypoints from uniform regions.



Chapter 3

Segmentation Based Image

Descriptors

This chapter investigates the segmentation-based image descriptors for object category

recognition. In contrast to the commonly used descriptors computed over regions pro-

vided by interest point detectors, the proposed descriptors are extracted from pairs

of adjacent regions given by a segmentation method. In this way, we exploit semi-

local structural information from images. We propose to use the segments as spatial

bins for descriptors of various image statistics based on gradient, colour, and affine

shape of regions. The proposed descriptors are evaluated on the standard recognition

benchmarks.

3.1 Introduction

Adequate image representations have been shown as crucial for the performance of

image retrieval and recognition systems. State-of-the-art systems rely on the interest

point detectors such as MSER, Hessian, and Harris [Mikolajczyk et al., 2005] typi-

cally combined with the local image descriptors, e.g. SIFT [Lowe, 1999]. For visual

categorisation, dense sampling has been advocated over the keypoint extraction [Ev-

eringham et al., 2007]. Chapter 2 showed that the unsupervised segmentation maps

constitute a good alternative to both standard keypoint detectors and dense sampling

49
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strategies. With less interest points derived from these maps, they outperform the

dense sampling approach which typically scores the highest in the challenging Visual

Object Category Recognition [Everingham et al., 2007]. This is due to the saliency

of the detected curvature-based keypoints between the segment boundaries, as well as

due to a full coverage of images with the extracted segments. This is in contrast to

the sparsely distributed interest points. This chapter investigates direct applicability of

the segmentation maps to devising image representations that cover all regions of the

processed images. Such an approach makes use of the semi-local structures formed by

the segments. In order to capture the boundaries of the objects, as well as the gradient

within their areas, the adjacent pairs of segments are processed as spatial support for

extracting various measurements from images. We argue that these pairs form good

spatial hypotheses which capture an essential gradient-based appearance of an object.

Furthermore, multiple segmentation maps extracted with different parameters enrich

such a hypothesis space. To our best knowledge, there are no other methods that use

segmentations as the spatial hypotheses for shape of the multiple descriptor cells.

3.1.1 Related work

Segmentation maps have been used widely as an auxiliary grouping cue instead of

the common bounding boxes [Malisiewicz and Efros, 2007]. It was also shown in [Ott

and M.Everingham, 2009] that enhancing foreground/background hypotheses improves

the classification results. Furthermore, extremal curvatures of segments were found to

serve well as the salient points outperforming the dense sampling strategies in chapter 2.

An optimal spatial arrangement of the descriptor bins has been recently investigated

in DAISY [Tola et al., 2008] which is aimed for dense matching. DAISY comprises

several circular regions which are arranged in a polar manner resembling petals of a

flower. Learning local image descriptors [Winder and Brown, 2007] can be performed

by selecting several operations: type of a gathered histogram evidence, shape of the

spatial bins. A blob-based representation proposed in [Carson et al., 1999], where a

small number of segments corresponding to the entire objects are described by colour

and texture, is somewhat similar in spirit to work presented in this chapter.
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Figure 3.1: Segmentations at the several scales of observation (see text for details).

3.2 Proposed Image Descriptors

Segmentation maps act as the spatial hypotheses to delineate distinct parts of objects.

Multiple measurements can be taken from images within such defined areas. In natural

images, objects appear at many different scales. Therefore, segmentation maps at

multiple scales of observation are extracted and used to build more accurate object

representations. For this purpose, the Watershed segmentation proposed in chapter 2

is employed. The average numbers of segments in the image were varied by factor of

1.6× between 4 consecutively coarser scales of observation S0, ..., S3 presented in figure

3.1 from top left towards bottom right.

3.2.1 Spatial Arrangement

To establish a baseline system, we devised a basic descriptor such that each segment

corresponded to one descriptor vector (a single spatial bin). The statistics of orienta-

tions of image gradients were extracted within areas of segments including boundaries

to form 12 dimensional vectors (we refer to it as V0).

Moreover, in order to exploit the semi-local image structures in the form of spatial

arrangements of segments, all pairs of the adjacent segments per image were used to
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Figure 3.2: The architecture of the proposed descriptors (see text for details).

build descriptors, each comprising two spatial bins. Figure 3.2 (top left) illustrates

how segments corresponding to the jockey’s head from figure 3.1 (bottom right) form

pairwise combinations yielding vectors D1, ..., D5, ..., DN . The repeatability of such

descriptors can be ensured by preserving of the order of the spatial bins in which they

were extracted from images. Therefore, the segments are always grouped from top

to bottom and from left to right. The structural noise and image distortions may

affect the order in which segments are extracted. However, with multiple segmentation

hypotheses and several training images per class, the proposed strategy works well.

Figure 3.2 (top middle) illustrates how the pairwise statistics from regions A and B

(note the order) are gathered to form a descriptor referred to as V1. The number of the

orientation bins defined on each spatial bin amounted to 8, 10, or 12 per experiment.

Moreover, various combinations can be formed from the pairs of segments. We investi-

gated if including regions around the boundaries of a segment pair independently from

their interiors can further improve these representations. Therefore, vectors formed

from the regions 3 and 5 in figure 3.2 (top right) were tested (descriptor variant V2).

To measure the levels of discriminative information within the segment interiors only,

a descriptor (variant V3) was designed from regions 4 and 6 in figure 3.2 (top right).

The statistics gathered only within small margins along boundaries of a joint segment

A∪B capture primarily the edge between regions. Therefore, influence of the strong
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Figure 3.3: Dominant orientations and sizes of segments can be repeatable.

gradients along boundaries of A∪B, except for their common boundary, is decreased.

Hence, we combined regions 1 and 2 only. This is the descriptor variant V4.

Lastly, we attempted to answer if boundaries and interiors of segments convey a com-

plementary information. Therefore, regions 3, 4, 5, and 6 were arranged into four

spatial bins forming descriptor. This descriptor variant is called as V5.

3.2.2 Capturing Shape of Segments

The shape of segments is captured by the orientations of image gradients, in particular

from segment boundaries. However, the dominant shapes of segments as well as their

relation can be additionally encoded by the eigenvectors of entire segments. Figure

3.3 shows three segmentations performed on images containing birds. Both dominant

orientations and sizes of segments seem to repeat. Therefore, such representations are

worth capturing. Figure 3.2 (bottom left) shows that ellipses are fitted into the adja-

cent segments to capture their dominant axes. Extracted eigenvectors and eigenvalues

provided auxiliary descriptor coefficients. Three scenarios were investigated:

• The 4, 6, or 8 orientation bins are addressed by the angles φk = φ(ek) of eigen-

vectors ek given a spatial bin. Each angle is quantised to choose one of the

orientation bins. The bin is then incremented by eigenvalue ek =‖ ek ‖2.

• The 2 bins conveying phase values φ1 and φ3 for two spatial bins.

• The 4 bins consisting of eigenvalues e1, ..., e4 for two spatial bins.
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3.2.3 Colour Statistics

Colour stimuli provide cues complementary to the orientation-based features, as ex-

plained in [van de Sande et al., 2008]. To capture the gist of a semi-local colour profile,

low dimensional colour histograms were collected from the image regions indicated

by the segments. We experimented with the Opponent and YUV colour spaces. We

also investigated the luminance-based additional normalisation on the Opponent colour

space. To decide how to quantise the histogram bins, we estimated their distributions

on the PascalVOC08 training set [Everingham et al., 2008], and concluded that the

marginal distributions of chromaticity components C1 and C2 were Laplacian shaped.

This suggested that the chromaticity components could be independent. Thus, twofold

ideas were examined: 5×5 bins for the joint statistics of C1 and C2 per segment, and

separate 5 bins for C1 and 5 bins for C2 statistics per segment. Note that the Opponent

and YUV colour spaces are both light intensity and shift invariant [van de Sande et al.,

2008]. These spaces are also similar semantically.

3.2.4 Data Assignment and Normalisation

A bilinear approximation was examined for assigning the data to the spatial bins. For

the segmentation-based descriptors, the linear weights depend on the distance from

the boundary between segments A and B. Moreover, a bilinear approximation for the

orientation bins was investigated. Various measurements are taken within each spatial

bin, to wit: the orientations of image gradients, eigenvalues of segments, histograms of

colours. Therefore, we experimented with normalising each measurement per spatial

bin, as well as per pair of spatial bins. The best results were achieved for each type of

information normalised to unit vectors per spatial bin per measurement type, except

for the histograms of eigenvalues which were both normalised jointly.

3.3 Evaluations and Results

The initial tests were performed on the PascalVOC08 set [Everingham et al., 2008] while

the final tests were carried out on the PascalVOC07 set [Everingham et al., 2007].
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3.3.1 Experimental Setup

The PascalVOC08 set consists of 2111 training and 2221 validation images for testing.

No testing corpus is available for this dataset. PMK and SVM classifier from [Grauman

and Darrell, 2005] were used. The PascalVOC07 set consists of 2501 training, 2510

validation, and 4952 testing images. The χ2 with RBF kernel (χ2
RBF ) and the KDA

classifier [Tahir et al., 2009] were employed for this dataset. Both classification systems

were trained for the same 20 object classes. For PMK, the same setup as in section 2.3.5

was recreated (4 pyramid levels with the branch factor equal 20). For χ2, hierarchical

k-means clustering with 10×400 clusters and Soft Assignment (SA) [van Gemert et al.,

2010] were applied. Furthermore, the dense sampling scheme on a regular grid with the

intervals of 8, 14, 20, and 26 pixels was applied to generate the reference SIFT [Lowe,

1999] descriptors with patch radii of 16, 24, 32, and 40 pixels.

The Average Counts of Features. The performed experiments aimed at using low

numbers of features. Segmentation scales S0, ..., S3 yielded approximately 596, 590,

353, and 199 feature vectors per image. Combined segmentation scales S123, S0123, and

S01234 produced 1148, 1738, and 2202 vectors. These numbers compare favourably to

3690 densely sampled SIFT descriptors.

3.3.2 Initial Experiments

The initial experiments were carried out on PascalVOC08 as it consists of a fewer

number of images. The goal was to compare different approaches for fusing the segment-

based statistics. Table 3.1 summarises results in terms of MAP computed over all 20

categories. The experiments were performed for scale S1 until stated otherwise. The

variant V 0 V 1DoS V 1o8S V 1o10
S V 1o12

S V 1H V 1HSb V 1HSbt V 2

MAP % 23.88 22.6 24.91 26.6 27.43 27.78 28.12 28.45 27.05

V3 V5 V 1EgHSbt V 1EgOp V 1Eg
Ôp

V 1EgUV V 1EgS03
V 1EgOpS03

DSIFT

17.26 28.09 28.65 30.62 29.61 30.67 32.32 34.00 33.77

Table 3.1: The MAP results for the experiments on the PascalVOC08 set.
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final dimensionality for each proposed descriptor variant is indicated in brackets. V 0 is a

single spatial bin descriptor (12D) as explained earlier. V 1DoS denotes a pair-of-segments

descriptor with 2×12 bins (separately normalised bins, bilinearly approximated) with

a built-in orientation invariance based on the dominant orientation mechanism [Lowe,

1999]. Typically, such an invariance decreases performance of PMK. However, other

applications may require this type of invariance. V 1o8S to V 1o12
S are variants of V 1 with

2×8, 2×10, and 2×12 orientation bins. According to the results, an increase in the

number of orientation bins leads to a slight increase of scores.

V 1H is a hard assigned variant (no bilinear approximation) of V 1 with 2×12 bins. V 1HSb

and V 1HSbt are the descriptor variants comprising hard assignment and the gradients

obtained with the Sobel operator. For V 1HSbt, the gradient magnitudes below an

arbitrarily low threshold were not included into the orientation bins. We note that the

hard assignment outperforms the bilinear assignment of the data. We attribute this to

the boundaries between pairs of segments to be already strong hypotheses distributing

gradients proportionally to the spatial bins. As only two spatial bins are employed,

smoothing should be avoided to preserve their distinctiveness.

Furthermore, the alternative spatial arrangements for pairs of segments were investi-

gated. V 2 to V 4 comprise 2 while V 5 have 4 spatial bins. They all use the hard

assignment, gradient computed with the Sobel mask, and the noise threshold, as in

V 1HSbt. Removing the interiors of segments did not bring any benefit (case of V 2).

Retaining these interiors while removing the boundaries of segments demonstrates that

some information is retained in these interiors, as the results of V 3 show. This may be

due to the blended transition of the boundary edges, as well as the texture. Variant

V 4 focusing on the boundary between segments A and B was a poorer performer than

V 2. Variant V 5 did not deem descriptors any more informative than ordinary V 1HSbt.

The remaining experiments in this section were concerned with exploitation of segment

shapes, their arrangements, and the colour statistics. We selected the most successful

variant V 1HSbt and combined it with 3 other variants of eigenvector based represen-

tations. Descriptors using the orientations of eigenvectors decreased the results whilst

the histograms of eigenvalues (4D) combined with V 1HSbt improved performance. This
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variant V 1HSbt V 1Eg V 1EgOp V 1EgOpF V 1EgS03
V 1EgOpS13

V 1EgOpS03

MAP % 39.14 39.73 43.39 43.00 43.44 45.26 46.02

V 1EgOpS04
DSIFT OSIFT OS+V 1 OS+V 1∗ BK BK+V 1

47.54 44.81 46.56 53.81 57.8 61.82 63.34

Table 3.2: The MAP results for the experiments on the PascalVOC07 set.

variant is referred to as V 1EgHSbt (28D). For clarity, let us drop the subscript and call

the most successful variant as V 1Eg. Its extensions with 2×2×5 bins of the Opponent

colour statistics are denoted as V 1EgOp (48D), luminance-normalised Opponent colour

statistics as V 1Eg
Ôp

(48D), and YUV statistics as V 1EgUV (48D). The best results were

delivered by V 1EgUV and V 1EgOp. Finally, to benefit from the multiple segmentations,

multiple feature vectors were appended across scales S0, ..., S3 to form V 1EgS03
(28D)

and V 1EgOpS03
(48D) descriptor variants. For convenience, the results for these variants

are indicated in green in table 3.1. With 5.6× less data, the latter variant outperformed

the dense SIFT descriptor (DSIFT).

3.3.3 Final Evaluations

Having identified the best configuration of the proposed descriptor, further tests were

performed on the PascalVOC07 set. This section also evaluates how complementary are

the proposed descriptors to SIFT. For this purpose, χ2 kernels built from the proposed

descriptor and the state-of-the-art kernels from [Tahir et al., 2009] were combined

together. Table 3.2 presents the results for both single kernels and the most interesting

fusions. As previously, V 1Eg seemed to score a bit higher than V 1HSbt. This confirms

that the 4D histogram of eigenvalues improves the representations. Given that the

Opponent and YUV colour spaces are closely related, we report only results for V 1EgOp

(48D) and V 1EgOpF which extends V 1Eg with 2×5×5 colour bins (78D). In spite of the

higher dimensionality of such distributions, no additional information was captured.

This can be explained by resemblance of these distributions to the product of the

marginal colour distributions.

To achieve invariance to the scale changes, segmentations were extracted at multiple

scales of observation. V 1EgOpS13
is a collection of V 1EgOp across scales S1, ..., S3. It per-
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formed on a par with the dense SIFT descriptor (DSIFT) given 8.6× less data. V 1EgOpS03

turned out to be an even better descriptor representation. V 1EgOpS04
outperformed the

dense Opponent SIFT descriptor (OSIFT) from [van de Sande et al., 2008] with 13.4×

less data. For convenience, the results for these variants are indicated in green in table

3.2. OS+V1 denote a kernel fusion of the Opponent SIFT and the best segmentation

descriptors. Despite both descriptors employ the colour statistics, their combination

resulted in a significant gain in performance. OS+V 1∗ are the results for V 1 merged

with the spatial version of kernel OS [van de Sande et al., 2008]. This improves the

results by 4%. Moreover, BK is a range of kernels built from several state-of-the-art

descriptors [Tahir et al., 2009]. BK+V 1 represents their fusion with our kernel based

on V 1EgOpS04
, with a further improvement of 5.5%. For convenience, the best results for

the multiple kernel fusions are indicated in red in table 3.2.

3.4 Conclusions

The experiments proved that the segmentation-based image descriptors are highly in-

formative, competitive, and complementary to SIFT. A computational advantage of

such representation was noticeable during clustering with k-means. Reduced dimen-

sionality and small numbers of descriptors resulted in faster computations. Unsuper-

vised segmentations delivered good spatial hypotheses that split objects into descriptive

semi-local regions at multiple scales of observation. Furthermore, such representations

resulted in a thorough coverage of images with descriptors, as opposed to the sparse

interest points. Moreover, the visually uniform regions were often delineated as sole

segments in segmentation maps. Therefore, this helped to reduce their contributions

in the final image representations. The results show that the proposed representations

outperform the state-of-the-art reference descriptors with 5.6× less data and achieve

comparable results to them with 8.6× less data. The proposed descriptors are comple-

mentary to SIFT and achieve state-of-the-art results when combined together within a

kernel based classifier. With 63.34%, the final kernel BK+V 1 outperformed a state-of-

the-art approach from [Yang et al., 2012a] which scored 62.2%.



Chapter 4

Reconstruction Error in Soft

Assignment

Visual Word Uncertainty, also known as Soft Assignment (SA), is a well established

technique for the BoW model that transforms local image descriptors into histograms.

This is accomplished by a flexible assignment of the descriptors to a visual vocabulary.

Recently, a substantial improvement in visual categorisation has been achieved with

Linear Coordinate Coding (LCC). This chapter investigates the SA model. Specifically,

it is shown that SA, a model derived from Gaussian Mixture Model (GMM), can act

as an approximation to the LCC model. This is achieved by an optimisation of the so-

called smoothing factor of SA. Such an optimisation combines SA with the quantisation

loss used by LCC. Minimising the quantisation loss in this manner correlates well with

the best classification performance, which is demonstrated on two popular datasets

and various image descriptors. Specifically, SIFT and the segmentation-based semi-

local descriptors presented in chapter 3 are employed.

4.1 Introduction

Transforming the local image descriptors into the image signatures lies at the heart of

the BoW model. The search for appropriate coding schemes expressing robustly the

content of images has been a subject of recent activity in the community. A number
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of methods have been proposed including Hard Assignment (HA), SA [van Gemert

et al., 2010], and a family of the LCC methods [Yu et al., 2009]. They entail Sparse

Coding (SC) [Yang et al., 2009], Locality-constrained Linear Coding (LLC) [Wang

et al., 2010], and other methods.

HA associates each descriptor vector with the nearest visual word of a k-means dictio-

nary. Whilst this provides with a fair expressive power, this model has poor quantisa-

tion properties, e.g. a descriptor on the cluster boundary may be assigned to one or

another word due to the stochastic noise. SA mitigates such an effect by employing soft

contributions of each descriptor to its closest visual words in the dictionary. This was

initially implemented as heuristics such as assigning a given descriptor to the k-nearest

visual words. Subsequently, SA [van Gemert et al., 2010] was found to be a more appro-

priate assignment scheme. However, it requires tiresome cross-validation to determine

the so-called smoothing factor that has impact on the classification performance of this

model. Moreover, to improve the quantisation properties of the assignment schemes,

the LCC coding was proposed [Yu et al., 2009]. This method expresses each descriptor

vector as a linear sparse combination of neighbouring dictionary anchors. The `1 norm

regularisation computed over the resulting assignments favours only a small subset of

non-zero assignment coefficients, this leads to the so-called sparsity. Moreover, SC

combined with SPM produced very promising results in [Yang et al., 2009].

This chapter is concerned with bridging the gap in understanding of SA in the context

of LCC, as the first approach can be viewed as an approximation of the latter one.

Moreover, SA is also shown to be related to Component Membership Probabilities of

GMM [Bilmes, 1997]. Foundations of LCC are exploited to find the optimal smoothing

factor for SA by optimising the quantisation loss that is typically used by the LLC

family. Minimising the proposed cost function is shown to correlate well with the best

classification performance.

4.2 Derivation of Soft Assignment

Given a mixture of K Gaussian functions G with the parameters θ = (θ1, ..., θK) =

((w1,m1,σ1), ..., (wK ,mK ,σK)), the density estimation problem can be solved by op-



4.3. Combining Soft Assignment and Linear Coordinate Coding 61

timising the following cost w.r.t. θ:

Λ(X ; θ) =
N∏
n=1

K∑
k=1

wkG(xn;mk,σk) (4.1)

K denotes the number of components, component index is indicated by k = 1, ...,K,

wk are the component mixing probabilities, mk are the Gaussian means, σk are the

deviations, xn are the descriptors from a given dataset such that n = 1, ..., N . The

membership probability of component k being induced by descriptor x is:

p(k|x) =
wkG(x;mk,σk)∑K

k′=1wk′G(x;mk′ ,σk′)
(4.2)

Note that the parameters of the model in equation (4.1) have a vast number of degrees

of freedom and therefore are further reduced to θ = (θ1, ..., θK) = ((m1, σ), ..., (mK , σ))

by fixing all mixing probabilities w1 =w2 = ...=wK 6=0 to be equal and having a single

σ parameter such that σ1 =σ2 = ...=σK =σ 6= 0. Therefore, the cost function can be

rewritten as:

Λ(X ; θ) =

N∏
n=1

K∑
k=1

G(xn;mk, σ) (4.3)

This leads to the expression for the membership probability of component k being

selected given descriptor x:

p(k|x) =
G(x;mk, σ)∑K

k′=1G(x;mk′ , σ)
(4.4)

Note that the above expression is also used by the SA model. Its role is to assign

descriptor x to the visual vocabulary. To compute the kth entry to the final histogram

representing a given image, an expected value of p(k|xn) is computed over descriptors

xn from that image, where n indicates each descriptor. Note that σ could be estimated

by minimising the GMM density in equation (4.3). However, σ estimated in such a way

proved underestimated as the density estimation and coding are different problems.

4.3 Combining Soft Assignment and Linear Coordinate

Coding

The foundations of LCC are provided in [Yu et al., 2009]. We discuss only the for-

mulations essential to the work in this chapter. Coordinate Coding is a pair (f,M),
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where M∈RD×K is a visual dictionary and f is a mapping of a descriptor x ∈ RD to

an image signature represented by vector φ = [fm(x)]m∈M ∈ RK . One can further

impose that
∑
m fm(x) = 1 and fm(x) ≥ 0 if histograms are required. The inverse of

mapping f can be expressed as x = f−1(φ,M). The LCC methods approximate the

inverse by the linear combination x̂ =
∑
m∈M fm(x)m. Thus, the residual error of the

approximation of descriptor vector x becomes:

ξ2(x) =
∥∥∥x− ∑

m∈M
fm(x)m

∥∥∥2

2
(4.5)

Moreover, the approximation error of all descriptors can be expressed as the expected

value of terms ξ2(xn) over all descriptor indexes n = 1, ..., N , or simply as a sum

ξ2 =
∑

n ξ
2(xn). Such a defined error is equivalent to the quantisation error also

known as the quantisation loss [Yu et al., 2009]. Therefore, combining equation (4.4)
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Figure 4.1: (Top) The membership probabilities given by equation (4.4) for three

arbitrarily chosen 2D anchors and smoothing factor (left) σ2 = 1 and (right) σ2 = 9.

(Bottom) The membership probabilities for 1D anchors given by (left) equation (4.4)

with σ2 =0.8 and (right) equation (4.2) with w1 =w2 =w3, σ2
1 =0.04, and σ2

2 =σ2
3 =0.8.

The anchors are marked with stems.
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with equation (4.5) results in a cost function we seek to minimise with respect to σ:

σ = arg min
σ̄

N∑
n=1

∥∥∥∥∥xn −
K∑
k=1

G(xn;mk, σ̄)∑K
k′=1G(xn;mk′ , σ̄)

mk

∥∥∥∥∥
2

2

(4.6)

LLC methods minimise the quantisation loss w.r.t. the assignment coefficients fm(x)

in order to obtain a good linear combination of visual words m a.k.a. anchors that

closely approximates descriptor x. Additionally, various regularisation terms are en-

forced depending on a particular method. We realise that SA can also approximate

descriptor x if a linear combination of anchors mk weighted by the corresponding as-

signment coefficients p(k|x) is performed over k = 1, ...,K. Therefore, we propose to

employ such an approximation to evaluate the residual error of SA and to find σ that

minimises it. Note that the membership probabilities p(k|x) in figure 4.1 (top and

bottom left) have almost linear slopes if σ is chosen appropriately. Moreover, these

membership probabilities vary locally, e.g. varying descriptor x in figure 4.1 (bottom

left) such that −2≤x≤0 induces only significant changes of the membership probabil-

ities spanned by anchors m1 and m2. This makes SA somewhat similar to the LCC

methods. However, if the GMM membership probabilities from equation (4.2) are used,

the locality property becomes violated. This is illustrated in figure 4.1 (bottom right)

by the red solid and green dashed curves. The slopes become ill-spanned and result in

a poor approximation of descriptors in proximity of m2. The emphasis of the linear

reconstruction is put on the descriptors in proximity of the narrow peak, despite these

descriptors differing from each other only marginally. Therefore, the SA model for the

membership probabilities from equation (4.2) may compromise the global reconstruc-

tion and prioritise it locally. The update rule for σ based on equation (4.3) is related to

equation (4.6). However, the differences suggest that σ has two different meanings for:

i) the optimal reconstruction of descriptor vectors measured by ξ2, and ii) the density

estimation problem.

Solving equation (4.6) is achieved by applying a coordinate-descent optimiser. Gradient

and Hessian are computed on the cost function from equation (4.6):

∂ξ2

∂σ
≈ [ξ2(σ + ∆σ)− ξ2(σ −∆σ)]/2∆σ (4.7)

∂2ξ2

∂σ2
≈ [ξ2(σ + ∆σ) + ξ2(σ −∆σ)− 2ξ2(σ)]/(∆σ)2
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Value of ∆σ depends on the descriptors used in the experiments outlined in the next

section. It determines the quality of approximation of the gradient and is set arbitrarily

to 1 and 0.001 for descriptors such that ‖x‖2 =255 and ‖x‖2 =1, respectively. Similarly

to GMM, there is no closed form solution for equation (4.6). However, the cost function

from this equation remains convex in σ. Moreover, only a small subset of descriptors

from the training set requires evaluations to establish σ reliably. As every descriptor

is represented by multiple visual words, a small subset of descriptors fills the entire

vocabulary space with samples. This is illustrated in the experimental section.

4.4 Evaluations and Results

This section provides an experimental insight regarding the quality of the achieved

descriptor approximations and the classification performance. Tests were performed on

the PascalVOC10 Action Classification set [Everingham et al., 2010] (301 training, 307

validation, and 613 testing bounding boxes) and the Flower17 [Nilsback and Zisserman,

2008b] set (3 splits, each consisting of 680 training, 340 validation, and 340 testing

images). For PascalVOC10, we report our results mainly on the validation set because

its testing set is not publicly available. However, we also provide the test results of

our approach submitted for the PascalVOC10 competition [Everingham et al., 2010].

Three descriptor variants were used to scrutinise the behaviour of the proposed cost

function. The grey scale SIFT descriptors [Lowe, 1999] were extracted on PascalVOC10

with dense sampling on a regular grid. Intervals of 8, 14, 20, and 26 pixels, and patch

radii of 16, 24, 32, and 40 pixels were applied. This produced 1200 descriptor vectors

per image on average. For Flower17, the Opponent SIFT descriptors [van de Sande

et al., 2008] combined with the Harris Laplace keypoints, as well as the segmentation-

based descriptors from chapter 3 were extracted. These two descriptor variants resulted

in 2300 vectors per image on average. The KDA and SVM classifiers were applied

interchangeably to the χ2 with RBF kernels (χ2
RBF ) [Tahir et al., 2009], as well as

the linear kernels, both formed from SA histograms optimised according to the scheme

proposed in section 4.3. The SPM approach [Lazebnik et al., 2006] with 3 levels of

coarseness was also employed. The dictionaries with typical K = 4000 anchors were
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Figure 4.2: Experiments on the PascalVOC10 Action Classification set. (Top) The

cost for a range of σ values given the grey SIFT descriptor such that (left) ‖x‖2 =255

(RSDS vocabulary) and (right) ‖x‖2 = 1 (k-means vocabulary). (Bottom) The uncer-

tainty of σ given ‖x‖2 =1 and (left) the RSDS and (right) the k-means vocabularies.

produced from the training sets by either Randomly Sampled Descriptor Set (RSDS),

k-means, or solving GMM model according to equation (4.3).

First, we provide an empirical evaluation of the convexity of the ξ2 cost from equation

(4.6) with respect to σ. 10 training images were drawn at random from the Pas-

calVOC10 set. Both RSDS and k-means were experimented with. In addition, the

reconstruction error was evaluated as a function of the smoothing factor σ.

Figure 4.2 (top) illustrates the cost curves for the grey scale SIFT descriptors such that

‖x‖2 = 255 (top left) and ‖x‖2 = 1 (top right). The RSDS and k-means vocabularies

were applied respectively. The produced curves show the quantisation error and illus-
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trate several interesting properties of the proposed model: i) the numerical accuracy of

the model becomes insufficient as σ moves to the left of the breaking point because the

ratio of Gaussians in equation 4.4 becomes numerically unstable, ii) σ corresponding to

the breaking point makes SA act closely to Hard Assignment, iii) there exists a unique

minimum for the cost, and iv) as σ → ∞, the assignment results in a total blurring:

all descriptors are assigned to all K anchors with equal weights.

Figure 4.2 (bottom) illustrates how much the estimated σ varies with a subset of the

drawn descriptors for RSDS (left) and k-means (right) vocabularies. Five-fold drawing

process was employed, each time 10 unique images with the corresponding descriptor

20 40 60 80 100 120
45

50

55

60

M
A

P
 (

%
) 

a
n
d
 ξ

2
 c

o
s
t

σ

 

 

ξ
2
/divider

SVM perform. MAP %

KDA perform. MAP %

Max.
MAP

4K k−means
min. energy

0 0.05 0.1 0.15 0.2

46

48

50

52

54

56

M
A

P
 (

%
) 

a
n
d
 ξ

2
 c

o
s
t

σ

 

 

ξ
2
/divider

SVM perform. MAP %

KDA perform. MAP %

Max.
MAP

4K k−means
min. energy

0 20 40 60 80
45

50

55

60

M
A

P
 (

%
) 

a
n
d
 ξ

2
 c

o
s
t

σ
flat*

 

 

ξ
2
/divider

SVM perform. MAP %

KDA perform. MAP %

Max.
MAP

4K k−means

min. ξ
2
 energy

1K GMM
min. energy

150 200 250 300

80

85

90

95

100

M
A

P
 (

%
)

σ

 

 

SVM MAP % for Seg−Based Descs.

KDA MAP % for Seg−Based Descs.

SVM MAP % for Hess−Lap. Opp. SIFT

KDA MAP % for Hess−Lap. Opp. SIFT

Max.
MAPMax.

MAP

SBD, 4K Desc. Samp.

min. ξ
2
 energy intervalHLO, 4K Desc. Samp.

min. ξ
2
    energy interval

Figure 4.3: (Top) MAP maxima and ξ2 minima (PascalVOC10, k-means, two variants

of SIFT, SA from equation 4.4). (Bottom left) MAP maxima and ξ2 for GMM given

by equation (4.2). (Bottom right) MAP maxima and ξ2 minima intervals on Flower17

(RSDS vocabulary, Opponent SIFT, the segmentation-based descriptors).
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files were picked at random. Despite the absolute cost values differ, the minima are

attained for approximately the same value of σ. The small uncertainty is negligible

from the classification point of view. Note that the k-means vocabulary leads to the

smaller quantisation loss compared to RSDS. Moreover, the optimal values of σ that

linearise best the SA model differ for both types of visual dictionaries.

Figure 4.3 (top) presents the MAP performance and the quantisation error as functions

of σ given the k-means vocabulary on the PascalVOC10 Action Classification dataset.

KDA and SVM were applied to χ2
RBF kernels. Both MAP and the energy ξ2 were

displayed in the same plot (ξ2 is scaled to fit this plot). These both curves reveal

a strong correlation between extrema of both measures. The optima are marked on

curves with circles. The best classification performance was achieved for σ estimated

according to equation (4.6). Plot 4.3 (top left) was prepared on the grey scale SIFT

descriptor such that ‖x‖2 =255. Moreover, a scheme called Spatial Coordinate Coding

was used that will be introduced in chapter 5.

Figure 4.3 (top right) was prepared with the grey scale SIFT such that ‖x‖2 =1. The

RSDS dictionary and the SPM scheme with 3 levels of depth were used. The estimated

σ proved to be optimal. Not shown in the plots, the RSDS vocabulary gave results

about 0.5% MAP lower compared to k-means. Moreover, SA was additionally compared

to SC. The same k-means dictionary was used as well as SPM. However, SC yielded

only 48.7% whilst SA reached 49.4% MAP.

Figure 4.3 (bottom left) presents the MAP performance and ξ2 for SA for equation

(4.2). The full parameters estimated with GMM were used. The flattening σ∗flat forces

all σk ≤ σ∗flat to σk = σ∗flat. This parameter was varied to show the difference between

non-uniform and uniform σk. When the majority of σk become equalised, ξ2 drops.

Gradually, the local MAP maxima align with the minimum of ξ2.

Lastly, figure 4.3 (bottom right) presents MAP and the ξ2 minima intervals on Flower17

set. The Opponent SIFT descriptor combined with the Harris Laplace detector, as well

as the segmentation-based descriptor from section 3 were used. We combined KDA

with χ2
RBF and SVM with the linear kernels. The optimisation scheme proposed in

equation (4.6) and SA from equation (4.4) were applied. For Opponent SIFT, the best
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σ varied between 145 and 155 given different sets of 10 randomly drawn images used

in estimations. The best MAP varied by up to 0.2% for σ estimated on less than 10

randomly picked images. σ estimated on the segmentation-based descriptors varied

between 240 and 258 with 0.13% uncertainty in MAP.

The best results attained by us on the PascalVOC10 Action Classification dataset

[Everingham et al., 2010] amount to 62.15% MAP and outperform other systems that

are reported in [Everingham et al., 2010]. These results were attained by averaging

multiple kernels computed on various descriptors [Tahir et al., 2009]. On Flower17, we

obtained 89.3% MAP (85.4% accuracy) using the segmentation-based descriptor. For

comparison, multiple kernel learning from [Yan et al., 2010] yields 86.7% accuracy.

4.5 Conclusions

We have presented a novel method for finding the optimal smoothing factor σ of the

SA model. It is extensively demonstrated that the reconstruction error ξ2 has a strong

impact on the classification performance. Moreover, such a minimised quantisation

loss correlates well with the best classification performance, as demonstrated on var-

ious descriptors and datasets. We have discussed relation of SA to GMM and the

LCC methods. We conclude that finding the best performing smoothing factor helps

linearise the SA model. Moreover, we demonstrated that the SA coder resulting from

the simplified GMM model can challenge the standard GMM approach. The latter

method requires in a large number of parameters which are harder to adjust and over-

come overfitting. The proposed experiments led to the state-of-the-art results on both

PascalVOC10 Action Classification and Flower17 datasets. In chapter 6, an improved

assignment scheme benefiting from the foundations of this chapter will be proposed.

Moreover, the SA model will be shown to further benefit from an appropriate pooling

scheme.



Chapter 5

Spatial Coordinate Coding,

Dominant Angle and Colour

Pyramid Matching

Spatial Pyramid Matching lies at the heart of modern visual categorisation. Once the

local image descriptors are transformed to vectors of visual words by the coding step,

these features are further processed by the spatial pyramid with coarse-to-fine grids

that quantise the spatial location of each descriptor associated with each feature. See

section 1.2.2 for detailed illustration of SPM. However, such a representation results

in extremely large histogram vectors of 200K or more elements, increasing both com-

putational and memory requirements. This chapter investigates alternative ways of

introducing the spatial information during formation of the histogram representations.

Specifically, we propose to apply spatial coordinates of descriptor keypoints at the

descriptor level. We refer to such an approach as Spatial Coordinate Coding. Further-

more, vertical or horizontal information, radius, or angle is used to perform semi-coding.

This is achieved by adding one of the spatial components at the descriptor level whilst

applying SPM to the another component. Moreover, we demonstrate that the Pyramid

Matching scheme can be applied robustly to other measurements: so-called Dominant

Angle and colour. We demonstrate state-of-the art results with means of the popular

coding techniques such as Soft Assignment, explained in chapter 4, and Sparse Coding.

69
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5.1 Introduction

Spatial Pyramid Matching (SPM) proposed in [Lazebnik et al., 2006] has been employed

by the majority of the modern visual categorisation systems. SPM is an extension

of Pyramid Match Kernel (PMK) proposed in [Grauman and Darrell, 2005]. SPM

instantly became a popular method to incorporate the spatial information into the

classification process. Popular systems that apply SPM are: Soft Assignment with the

χ2 distance combined with RBF kernel (χ2
RBF ) [van Gemert et al., 2010, Tahir et al.,

2009], Linear Coordinate Coding from [Yu et al., 2009], Sparse Coding from [Yang et al.,

2009], Locality-constrained Linear Coding from [Wang et al., 2010], and approaches

using Fisher Vector Encoding [Perronnin et al., 2010] or Super Vector Coding [Zhou

et al., 2010]. Note that the last two approaches produce extremely large histograms,

which are further extended with the SPM scheme to improve their performance. Such

approaches use a simplified layout of spatial partitions, e.g. the method from [Tahir

et al., 2009] used 1×1, 2×2, 1×3 horizontal, and 3×1 vertical windows whilst [Marszalek

et al., 2007, Zhou et al., 2010] used 1×1, 2×2, and 1×3 horizontal divisions.

For the first contribution, we propose a scheme called Spatial Coordinate Coding (SCC)

that applies spatial coordinates from the descriptor keypoints at the descriptor level.

This reduces the histogram sizes from K×S(Q2) to K×S(11), where K is the size of

input histograms, Q is the number of SPM levels of quantisation, and S(Ql) =
∑Q

q=1 q
l.

Moreover, we manipulate spatial coordinates to be partially absorbed at the descriptor

level and by SPM, and reduce the histogram sizes from K×S(Q2) to K×S(Q1). SCC

is demonstrated to work with two popular descriptor coding methods: SA and SC. It

can be also applied to methods proposed in [Perronnin et al., 2010, Zhou et al., 2010].

For the second contribution, we apply Pyramid Matching to various types of measure-

ments. The Dominant Angle (DA) mechanism proposed in [Lowe, 1999] can be applied

instead of the spatial information by DA normalising the local image descriptors and ap-

plying partitioning based on the values of DA rather than the spatial coordinates. The

colour information of the segmentation-based descriptors from chapter 3 is exploited in

a similar manner. Furthermore, we demonstrate that SCC, DoPM, and CoPM deliver

the state-of-the-art results on two datasets.
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5.2 Spatial Coordinate Coding

SA and SC are two extremely popular techniques for transforming the descriptors into

the image signatures in the BoW model. For convenience, the notion of the image

signatures is explained in section 1.2.2. Typically, systems that employ these methods

add the spatial information to the classification process by SPM. However, this results

in the signatures of length K×S(Q2).

Let xs = [cx/w, cy/h]T be the spatial coordinates of descriptor x that are normalised

by the image width and height. Furthermore, let xp=[r, φ]T be a vector with the unit

normalised radius r=
√

(cx/w−0.5)2 +(cy/h−0.5)2/(
√

2/2) as well as angle information

φ = 0.5 + atan(cx/w−0.5, cy/h−0.5)/(2π). Let mk be the visual words of a visual

vocabulary M with K atoms, such that k = 1, ...,K. Moreover, let M to be built

by either k-means or Randomly Sampled Descriptor Set (RSDS). Let ms
k and mp

k be

the corresponding elements of the spatial vocabulary arranged in the same manner as

parametrisations xs and xp, respectively.

We propose to replace the SPM scheme in the BoW model by applying either: i) spatial

parametrisation x
′
=xs/2 or x

′
=xp/2 leading to the signatures of length K×S(11),

or ii) semi-spatial parametrisation x
′
= cx/w, x

′
= cy/h, x

′
= r, or x

′
=φ. In the latter

case, both spatial channels, e.g. cx/w and cy/h are processed one by the SCC and the

other by the SPM scheme. The same arrangement is used for r and θ. This leads to

the signatures of length K×S(Q1), which are shorter compared to the standard SPM

scheme resulting in the signatures of length K×S(Q2), as indicated earlier.

5.2.1 SCC for Soft Assignment

The Soft Assignment model is introduced in chapter 4. Enhancing formula (4.4) with

the spatial or semi-spatial coordinates can be done by adding spatially parametrised

vectors x
′

and m
′
k to the Gaussian components as follows:

G
′
(x,x

′
;m,m

′
, σ
′
, ω) = G

(
(1−ω)x; (1−ω)m, σ

′
)
·G(ωx

′
;ωm

′
, σ
′
) (5.1)

The additional parameter ω ∈ 〈0, 1) represents a trade-off between the visual appear-

ances and the spatial bias. Redefining the membership probability from equation (4.4)
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results in:

p(k|x,x′) =
G
′
(x,x

′
;mk,m

′
k, σ

′
, ω)∑K

k′=1G
′(x,x′;mk′ ,m

′
k′ , σ

′, ω)
(5.2)

The best smoothing factor σ
′

differs from σ for such a reformulated model in equation

(5.2) due to the additional spatial information being introduced. One can use cross-

validation to find the best σ
′

or employ the optimisation method from chapter 4.

5.2.2 SCC for Sparse Coding

The operating principle of SC is to express each descriptor vector as a sparse linear

combination of visual words. The `1 norm computed over the assignments favours only

a small subset of non-zero coefficients during the assignment step. This is known as

the Lasso problem. The BoW model employing such an assignment step and SPM

was shown to perform well in [Yang et al., 2009]. Finding the sparse assignments for

descriptor x given visual vocabularyM∈RD×K is achieved by optimising the following:

φ = arg min
φ̄

∥∥∥x−Mφ̄
∥∥∥2

2
+ α‖φ̄‖1 (5.3)

Parameter α regulates the sparsity of the assignment vector φ. We propose to enhance

formula (5.3) with the spatial or semi-spatial coordinates by introducing vectors x
′

and

m
′
k to the Lasso problem. This is achieved by adding a second quantisation loss that

controls the quantisation cost of the spatial components:

φ = arg min
φ̄

(1−ω)
∥∥∥x−Mφ̄

∥∥∥2

2
+ ω

∥∥∥x′ −M′
φ̄
∥∥∥2

2
+ α‖φ̄‖1 (5.4)

Note that equations (5.2) and (5.4) can be solved with standard SA and SC in equations

(4.4) and (5.3), respectively, by simply concatenating appropriately the local image

descriptors x with the corresponding spatial coordinates x
′
. Specifically, we perform

an augmentation of descriptor x such that x :=
[√

1−ωxT ,
√
ω(x

′
)T
]T

. The analogous

operation has to be performed on visual words mk for all k=1, ...,K.

5.3 Dominant Angle and Colour Pyramid Matching

This section provides details on how to exploit Dominant Angle (DA) from [Lowe, 1999],

as well as the colour channels from the segmentation-based descriptors introduced in
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sky, tree, ship, grass,
train, road, pavement

sky, tree, train
tree, ship, grass
road, pavement

sky
sky, tree, ship, grass,
train, road
grass, road, pavement

Figure 5.1: Illustration of the spatial bias in images.

chapter 3, in the Pyramid Matching scenario. A variety of cues may be appropriate for

quantising them at multiple levels of coarseness. The spatial bias introduced in chapter

1 is illustrated for convenience in figure 5.1. Note that various image partitions tend to

contain different visual appearances. For instance, the sun and clouds usually appear

in the sky. Therefore, they are mostly to appear in the upper parts of images.

If spatial locations of objects of class s ∈ S introduce any spatial bias, this can be

captured in a set of spatial coordinates X ′s associated with class s. Subsequently,

observing object o at location x
′ ∈ X ′s in a previously unseen image increases belief

that this object belongs to class s. If p(o=s) represents a belief of a given recognition

system that object o belongs to class s, then spatial location x
′

of this object can alter

such a belief, e.g. p(o=s|x′ ∈X ′s) ≥ p(o=s) ≥ p(o=s|x′ /∈X ′s).

Similar can be said about the orientations of dominant edges in images. For instance,

trunks of trees and fences are more likely to maintain vertical positions in image collec-

tions. This phenomenon is illustrated in figure 5.2 and called as the orientation bias.

It can be captured by the DA mechanism build into the SIFT descriptors. DA is a

direction with respect to the origin of an image patch that indicates the orientation

of the largest image gradients within that patch. Capturing a set of DA called Θs

fence fence fence
trunktrunk

Figure 5.2: Illustration of the orientation bias in images.
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which is associated with class s should results in an analogous sequence of believes,

as illustrated earlier for the spatial bias: p(o= s|θ ∈Θs) ≥ p(o= s) ≥ p(o= s|θ /∈Θs).

Note that the rotationally variant descriptors result in much better classification results

on the segmentation-based descriptor in chapter 3 compared to rotationally invariant

counterparts. The similar observation holds for the SIFT descriptors. This suggests

that the orientation bias in images is essential in robust visual categorisation.

Moreover, the facial complexion or a fur of animals are likely to be of a limited colour

range. Figure 5.3 illustrates that the sky and trees can be partially distinguished from

each other by their colour appearances. Therefore, one can capture the colour bias in

images by building a set of colours associated with class s, called Cs. This should lead

to the sequence of believes such that: p(o=s|c∈Cs) ≥ p(o=s) ≥ p(o=s|c /∈Cs).

In the following experiments, we introduce DA to the classification process in two

ways: i) by setting x
′

= θ, or ii) by performing Pyramid Match on θ. Regarding colour,

the segmentation-based descriptors are used as they contain the colour statistics. We

reduced 20D opponent colour histograms by Principal Component Analysis (PCA)

to 10D. An opponent colour component corresponding to the highest variance after

the projection was processed with Pyramid Matching. The remaining 9 components

replaced the original opponent vectors.

5.4 Evaluations and Results

This section provides an evaluations of Spatial Coordinate Coding and Spatial Pyramid

Matching. The evaluations were carried out on the PascalVOC10 Action Classifica-

tion set from [Everingham et al., 2010] (301 training, 307 validation, and 613 testing

bounding boxes) and the Flower17 set from [Nilsback and Zisserman, 2008b] (3 splits

sky trees

Figure 5.3: Illustration of the colour bias in images.
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of data, each consisting of 680 training, 340 validation, and 340 testing images). For

PascalVOC10, we report the results obtained on the validation set, as the testing set is

not publicly available. Moreover, we quote our results on the test set submitted for the

PascalVOC10 competition [Everingham et al., 2010]. Experiments on Dominant Angle

Pyramid Matching were performed on the PascalVOC07 set [Everingham et al., 2010].

Two variants of descriptors were exploited: the grey scale SIFT for the PascalVOC10

and PascalVOC07 sets, as well as the segmentation-based descriptors introduced in

chapter 3 for the Flower17 set. Dense sampling on a regular grid with the intervals of

8, 14, 20, and 26 pixels, and patch radii of 16, 24, 32, and 40 pixels was applied for

SIFT. This produced approximately 1200, 3690, and 2300 descriptors per image given

the PascalVOC10, PascalVOC07, and Flower17 sets, respectively. We combined the

KDA classifier [Tahir et al., 2009] with the χ2 distance used by RBF kernels (χ2
RBF )

and SVM with the linear kernels. These kernels were formed with either SA introduced

in chapter 4 or SC [Yang et al., 2009].

As a reference, SPM with 3 and 4 levels of depth were employed for SA and SC re-

spectively. The visual vocabulary of size K = 4000 was produced by k-means for the

PascalVOC10 and pascalVOC07 sets, whilst the RSDS vocabulary was extracted for

Flower17. RSDS performed better than k-means on this set. Nonetheless, this chapter

is not concerned with investigations of various kinds of visual dictionaries.

5.4.1 SCC and Action Classification

The Pascal 2010 Action Classification set is provided with the bounding boxes that

delineate humans performing various actions. Every person’s head is roughly aligned

to the top middle location of a given bounding box. Therefore, the spatial locations of

objects interacted with can be expressed with respect to the top middle reference point.

SC1234 SC+SCC SA123 SA+SCC SA+SCC

Lin+SVM Lin+SVM χ2
RBF 2+KDA χ2

RBF +KDA χ2
RBF +KDA

1ker+val 1ker+val 1ker+val 1ker+val multiker+tst

50.6 49.0 49.8 51.6 62.15

Table 5.1: MAP for the PascalVOC10 Action Classification set.
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To exploit this, Spatial Coordinate Coding is applied and compared with Spatial Pyra-

mid Matching. Table 5.1 presents the results obtained on this set. SC combined with

SPM given 4 levels of coarseness (denoted SC1234) turned out to be a better performer

than SA and SPM with 3 levels of coarseness (denoted as SA123). SC combined with

the SCC scheme (denoted as SC+SCC) performed marginally worse than SC1234. SA

with SCC (denoted as SA+SCC) was the strongest performer reaching 51.6% MAP.

Moreover, a combination of multiple kernels as in [Tahir et al., 2009] led to the state-of-

the-art score of 62.15% MAP on the testing set. We observed that SA with the χ2
RBF

kernel benefits the most from the proposed SCC scheme.

5.4.2 Understanding the Dominant Angle

The PascalVOC07 set consists of 20 object categories that result in high variability

in scale, rotation, and spatial positions. This section presents a brief study on the

Dominant Angle and its applicability in Pyramid Matching. The results reported below

were achieved with SA, the χ2
RBF kernel, and the KDA classifier. According to table

5.2, DA is an important modality aiding robust visual categorisation. DA Inv. denotes

the baseline obtained with the SIFT descriptors that were deemed invariant to the

patch rotation. Enabling such an invariance decreased the classification performance

compared to the typical DA variant scenario (DA Var.) applied in the BoW model from

50.23% to 46% MAP. Moreover, we used DA invariant SIFT and injected DA directly

to equation 5.2 (referred to as DACC) with ω= 1
2 , 2

3 , and 4
5 . DACC with ω= 4

5 achieved

50.24% MAP on a par with the DA Var. scenario. Therefore, DA is shown as a very

important cue as, by removing DA information from SIFT and then reintroducing DA

back to the classification process, it regained its full performance. For comparison, DA

Var. and DACC with ω= 4
5 are indicated in green in table 5.2.

DA Inv. DA Var. DACCω= 1
2

DACCω= 2
3

DACCω= 4
5

46.00 50.23 47.2 49.80 50.24

DA Var.+ DA12468 DA136912 DA136912+

SPM 54.3 52.30 53.40 SPM 56.3

Table 5.2: MAP for the PascalVOC07 set illustrating relevance of DA.



5.4. Evaluations and Results 77

SA Lin SCCω= 6
11

SCCω= 9
14

SPM SPMrθ

SVM 84.31 84.96 86.8 85.6

SA χ2
RBF SCCω= 6

11
SCCω= 9

14
SPM SPMrθ

KDA 90.96 91.16 89.3 89.63

SC Lin NO SCC SCCω= 1
3

SPM

SVM 89.11 90.46 90.83

Table 5.3: MAP for the Flower17 set comparing the SCC and SPM schemes.

Furthermore, DA can be quantised with Pyramid Matching. The orientation invariant

SIFT descriptor combined with Pyramid Matching with 5 levels of angular splits 1, 3, 6,

9, 12 (denoted asDA136912) achieved 53.4% MAP. This constitutes a 3.1% improvement

over the DA Var. scenario. We attribute this to exploiting the orientation bias at

the multiple levels of coarseness. Moreover, combining DoPM with SPM (denoted as

DA136912+SPM) boosted performance from 54.3% to 56.3% MAP given the grey scale

SIFT descriptor only. The best results for DoPM are indicated in red in table 5.2.

5.4.3 SsCC and CoPM on Flower17

Performance of both SCC and Semi-spatial Coordinate Coding (SsCC) was evaluated

on the Flower17 set with means of both SA and SC. According to results in table

5.3, SA with SVM and the linear kernel (SA Lin SVM row) achieved better results

of 86.8% MAP if using SPM with 3 levels of depth rather than SCC. Radius and θ

parametrised SPM (SPMrθ) was a close performer. Also, SCCω= 9
14 achieved a similar

score of 84.93% MAP. The gap of 1.9% in performance between these two methods is

bridged by Semi-spatial Coordinate Coding presented in table 5.4. Note that SA with

the χ2
RBF kernel and KDA classifier (SA χ2

RBF KDA row) exploited SCC to its fullest

SA Lin SPMy+ SPMx+ SPMθ+ SPMr+

SVM SCCx 87.5 SCCy 87.1 SCCr 87.5 SCCθ 87.5

SA χ2
RBF SPMy+ SPMx+ SPMθ+ SPMr+

KDA SCCx 90.4 SCCy 90.1 SCCr 90.2 SCCθ 90.2

SC Lin SPMy+ SPMx+ SPMθ+ SPMr+

SVM SCCx 90.7 SCCy 91.3 SCCr 91.2 SCCθ 90.4

Table 5.4: MAP for the Flower17 set utilising Semi-spatial Coordinate Coding.



78 Chapter 5. Spatial Coordinate Coding, Alternative Pyramid Matching Schemes

potential outperforming SPM by approximately 1.8% and reducing the histogram sizes

from 4K×S(32)=56K to 4K×S(11)=4K elements. Moreover, SC with the linear kernel

and SVM (SC Lin SVM row) benefited 1.2% from SCC over the no-spatial-information

scenario (NO SCC), whilst SPM led to about 1.6% over NO SCC. These results are

further improved by the SsCC scheme, as presented below.

According to table 5.4 (first row), all semi-spatial combinations improved results by

up to 0.7% over SA with the linear kernel and SPM. We combined SPM and SCC for

specific semi-spatial channels x, y, r, θ, as proposed in section 5.2. SA with the χ2
RBF

kernel and the KDA classifier (second row) favours full SCC reaching 91.16% compared

to 90.4% MAP for SPMy+SCCx. SC (bottom row) benefited from the semi-spatial

variants SPMx+SCCy and SPMθ+SCCr scoring 91.3% MAP and outperforming SPM

by 0.47%. This limited the signature sizes from 4K×S(42)=120K to 4K×S(31)=24K.

Moreover, we investigated the benefit of quantising the colour cues on Flower17. The

setup for this experiment is explained in section 5.3. SA with the χ2
RBF kernel, KDA

classifier, and SCC (91.16% MAP, 86.4% accuracy) were enhanced by this method and

produced the state-of-the-art results of 92.2% MAP (87.4% accuracy). This, combined

with the Opponent SIFT descriptor at the kernel level, increased results to 95.2% MAP

(91.4% accuracy). The runner-up reports 86.7% accuracy [Yan et al., 2010].

5.5 Conclusions

We have presented a novel method injecting the spatial coordinates to the classifica-

tion process at the descriptor level. This resulted in small image representations and

improved results for Soft Assignment combined with the χ2
RBF kernels. Moreover, a

semi-spatial approach was proposed to benefit Sparse Coding combined with the lin-

ear kernels. Previously overlooked importance of the Dominant Angle mechanism was

demonstrated together with the promising classification results. This was especially

prominent when DA was combined with Pyramid Matching. As various objects exhibit

different levels of the colour constancy, we showed that the opponent colour components

also thrive on quantising with Pyramid Matching. This resulted in the state-of-the-art

performance on both PascalVOC10 Action Classification and Flower17 sets.



Chapter 6

Comparison of Mid-Level Feature

Coding Approaches And Pooling

Strategies in Visual Concept

Detection

Bag-of-Words lies at the heart of modern object category recognition systems. Af-

ter descriptors are extracted from images, they are expressed as vectors represent-

ing visual word content, referred to as mid-level features. In this chapter, we re-

view a number of techniques for generating mid-level features, including Soft Assign-

ment, Locality-constrained Linear Coding, Sparse Coding, and propose Approximate

Locality-constrained Soft Assignment. Next, we also identify the underlying properties

that affect their performance. Moreover, we investigate various pooling methods that

aggregate mid-level features into vectors representing images. Average, Max-pooling,

and a family of likelihood inspired pooling strategies are scrutinised. We demonstrate

how both coding schemes and pooling methods interact with each other. We generalise

the investigated pooling methods to account for the descriptor interdependence and

introduce an intuitive concept of improved pooling. We also propose a coding-related

improvement to increase its speed. Lastly, state-of-the-art performance in classification

79
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is demonstrated on Caltech101, Flower17, ImageCLEF11, and PascalVOC07 datasets.

6.1 Introduction

Bag-of-Words proposed in [Sivic and Zisserman, 2003, Csurka et al., 2004] is a popu-

lar approach which transforms local image descriptors [Lowe, 1999, Mikolajczyk and

Schmid, 2005, van de Sande et al., 2008] into image representations that are used in

matching and classification. Its first implementations were associated with object re-

trieval and scene matching [Sivic and Zisserman, 2003], as well as visual categorisation

[Csurka et al., 2004]. The BoW approach has undergone significant changes over recent

years but it can be summarised by the following steps:

1) First, the local image descriptors are extracted from images. Next, a dictionary,

also known as a visual vocabulary, is learnt by finding a set of descriptive discrete

appearance prototypes defined in the descriptor space, e.g. by k-means clustering

of descriptors from a training dataset. These prototypes are often called as visual

words, centres, atoms, and anchors.

2) Feature coding a.k.a. mid-level coding is then performed by embedding local de-

scriptors into the visual vocabulary space. This results in so-called mid-level features

which express each descriptor by a subset of visual words.

3) A pooling step is carried out to transform mid-level features from an image into

a final representation in a form of vector called image signature. A basic pooling

approach aggregates every local descriptor represented by a combination of visual

words into a single signature vector. Finally, training and classification can be

performed on the signatures by a classifier, e.g. SVM [Cortes and Vapnik, 1995] or

KDA [Tahir et al., 2009].

Each step has a strong impact on the quality of image representation and can affect

the classification performance and computational speed. The objective of this chapter

is to closely examine various techniques proposed for the coding and pooling steps and

demonstrate their performance in a number of benchmarks.
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A baseline BoW approach [Sivic and Zisserman, 2003] employs k-means clustering of

local descriptors from a training dataset and assigning each descriptor to the nearest

cluster (mid-level coding). This is often referred to as Hard Quantisation or Hard

Assignment. A histogram representing the image is obtained by counting the number

of assignments per cluster. Averaging such counts by the number of descriptors in the

image results in Average pooling [Csurka et al., 2004, van Gemert et al., 2008, 2010].

A number of mid-level coding methods proposed to date include Kernel Codebook

[van Gemert et al., 2008, 2010, Philbin et al., 2008, Lingqiao et al., 2011] a.k.a. Soft

Assignment and Visual Word Uncertainty, the family of Linear Coordinate Coding,

entailing Sparse Coding (e.g. Lasso [Lee et al., 2007, Yang et al., 2009] and greedy

coders like Match Pursuit [Mallat and Zhang, 1993] and Orthogonal Match Pursuit

[Tropp, 2004]), Linear Coordinate Coding [Yu et al., 2009], Locality-constrained Linear

Coding [Wang et al., 2010], Laplacian Sparse Coding [Gao et al., 2010], and Over-

Complete Sparse Coding [Yang et al., 2010]. Other robust approaches include Fisher

Vector Encoding [Perronnin and Dance, 2007, Perronnin et al., 2010], Super Vector

Coding [Zhou et al., 2010], Vector of Locally Aggregated Descriptors [Jégou et al.,

2010], and Vector of Locally Aggregated Tensors [Negrel et al., 2012].

Quantisation effects in Hard Assignment coding were found to be a source of ambiguity

[Philbin et al., 2008]; descriptor vectors lying on the border of two clusters can be

assigned to one or the other merely due to low-level stochastic noise. It is argued

in [Wang, 2007] that a small set of descriptors along cluster boundaries are the most

discriminative ones and must be represented well, e.g. by hierarchical clustering. The

quantisation effect is somewhat alleviated by assigning descriptors to their l-nearest

clusters [Philbin et al., 2008, Tahir et al., 2009] rather than to the nearest cluster only.

However, descriptor vectors can be different and yet they may share the same l-nearest

clusters. Soft Assignment is another approach to feature coding [van Gemert et al.,

2008, 2010] that yields cluster membership probabilities for every visual word given a

descriptor. Such a strategy is beneficial as descriptors are assigned to every cluster

centre with different probabilities thus improving the quantisation properties of the

coding step. Lastly, there has been a significant progress in Linear Coordinate Coding

methods [Lee et al., 2007, Yang et al., 2009, Yu et al., 2009, Wang et al., 2010, Gao
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et al., 2010, Zhou et al., 2010] leading to state-of-the-art results with BoW [Everingham

et al., 2010]. These approaches seek a few weighting coefficients to linearly combine

elements of the dictionary to approximate a given descriptor. Final image signatures

are formed from the largest coefficients per visual word which is termed Max-pooling

[Yang et al., 2009, Boureau et al., 2010a,b, Lingqiao et al., 2011].

Recent progress in mid-level feature coding has also provided an insight into the role

played by pooling during the generation of image signatures. The theoretical relation

between Average and Max-pooling was studied in [Boureau et al., 2010a]. A detailed

likelihood-based analysis of feature pooling was conducted in [Boureau et al., 2010b]

which led to a theoretical expectation of Max-pooling, improving overall classification

results. Power Normalisation has been also applied to Average pooling by Fisher Vector

Encoding [Perronnin et al., 2010]. Lastly, Max-pooling has been recognised as a lower

bound on the likelihood of at least one particular visual word being present in an image

[Lingqiao et al., 2011]. We show later that some of these methods are closely related.

A crucial component of the BoW approach, which has an impact on pooling, is Spatial

Pyramid Matching [Lazebnik et al., 2006]. It exploits spatial bias in images by ex-

pressing spatial relations at multiple levels of quantisation. Also, clustering mid-level

features and applying pooling in each cluster [Boureau et al., 2011] limits the uncer-

tainty of pooling. Exploiting other types of bias in images to partition the features is

also effective, e.g. Dominant Angle and Colour Pyramid Matching from chapter 5.

A recent review of coding schemes [Chatfield et al., 2011] includes Hard Assignment,

Soft Assignment, Approximate Locality-constrained Linear Coding, Super Vector Cod-

ing, and Fisher Vector Encoding. Evaluations of BoW in [Yang et al., 2007] employ

ideas from text analysis: term frequency, inverse document frequency and various nor-

malisation schemes. The importance of mid-level coding versus dictionary training is

studied in [Coates and Ng, 2011]. Various dictionary learning approaches are considered

and described in [Tosic and Frossard, 2011]. Lastly, Hard Assignment, Soft Quanti-

sation, and Sparse Coding are combined with Average and Max-pooling, and their

characteristics are studied in depth in [Boureau et al., 2010a]. More pooling strategies

are presented in [Boureau et al., 2010b].
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Although there exist various comparisons of BoW, there is a lack of large scale evalua-

tion of both mid-level coding and pooling strategies in a common testbed. The analysis

of interaction between these two stages constitutes the main contribution of our work:

1) We evaluate various mid-level coding schemes such as Soft Assignment (SA) [van

Gemert et al., 2008, 2010, Philbin et al., 2008], its extension Approximate Locality-

constrained Soft Assignment (LcSA) proposed by [Lingqiao et al., 2011] as well as

by us1, Sparse Coding (SC) [Lee et al., 2007, Yang et al., 2009], and Approximate

Locality-constrained Linear Coding (LLC) from [Wang et al., 2010].

2) We compare various pooling schemes such as Average pooling (Avg) used in [Csurka

et al., 2004, van Gemert et al., 2008, 2010], Max-pooling (Max) used in [Yang et al.,

2009, Boureau et al., 2010a,b, Lingqiao et al., 2011] , Power Normalisation a.k.a.

Gamma Correction (Gamma) used in [Perronnin et al., 2010], theoretical expectation

of Max-pooling (MaxExp) proposed in [Boureau et al., 2010b], the probability of

at least one particular visual word being present in an image (ExaPro) proposed in

[Lingqiao et al., 2011], `p norm (lp-norm) as a trade-off between Average and Max-

pooling explored in [Boureau et al., 2010b], and Mix-order Max-pooling (MixOrd)

from [Lingqiao et al., 2011].

3) We devise a simple approximation of MaxExp pooling (AxMin) and illustrate that

Gamma also approximates MaxExp. Before evaluating MaxExp, AxMin, as well as

Gamma, we generalise them to account for the descriptor interdependence, e.g. due

to the overlap of descriptors. A pooling extension is proposed that uses the top n

largest mid-level feature coefficients (@n) per visual word. This reduces the noise

and improves the performance. We show that Max-pooling is a special case of @n.

4) Spatial (SPM) and Dominant Angle Pyramid Matching (DoPM), introduced in

[Lazebnik et al., 2006] and chapter 5 respectively, are employed to demonstrate

their interaction with the pooling step. The early fusion of the spatial cues and

descriptors called Spatial Coordinate Coding (SCC) from chapter 5 is used, as it

leads to 36× faster kernel computations compared to SPM.

1This contribution was independently proposed and developed shortly before a similar approach was

published by others in [Lingqiao et al., 2011].
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5) Finally, the role of the reconstruction error a.k.a. quantisation error in the coding

schemes is illustrated. It is demonstrated empirically that minimising such an error

over parameters of LcSA correlates well with its best classification performance. To

increase the efficiency of coding, two coding methods are combined with Spill Trees

[Liu et al., 2004] and compared to the baseline methods of various dictionary sizes.

Section 6.2 formally introduces Bag-of-Words and describes mid-level coding methods.

Section 6.3 introduces pooling methods. Section 6.4 details the experimental frame-

work. Various coding and pooling methods are then compared, followed by a detailed

discussion. Section 6.5 draws conclusions on this work.

image
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and a norm

descriptors to
mid-level features

pooling acts on rows of
mid-level feature matrix

(a) (b)
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(c) (d)

Figure 6.1: Overview of Bag-of-Words showing mid-level coding and pooling steps.

(a) |N | local descriptors of dimension D are extracted from an image. (b) Mid-level

coding embeds the descriptors into the visual vocabulary space using K visual words

from dictionaryM. Circles of various sizes illustrate values of mid-level coefficients. (c)

Mid-level features of partition q are stacked. Next, pooling aggregates the values along

rows and forms a single vector per spatial partition. (d) Vectors from all partitions are

concatenated and normalised to form signature h.
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6.2 Overview of Mid-level Feature Coding Approaches

The goal of mid-level coding is to embed descriptors in a representative visual vocab-

ulary space. This can be seen as a form of interpolation. Mid-level coding interpolates

data on an irregular grid stretched across the surface of a hypersphere of `2 norm nor-

malised descriptor space. Due to the high dimensionality of the descriptor space, it

is not practical to partition it evenly [Tuytelaars and Schmid, 2007]. Thus, density

estimation is usually employed to find the densely occupied regions.

Figure 6.1 illustrates the role of each step employed in Bag-of-Words. Formulations for

mid-level coding and pooling will now be described. Let us assume descriptor vectors

xn ∈ RD such that n = 1, ..., N , where N is the total descriptor cardinality for the

entire image set I, and D is the descriptor dimensionality. Further, X ={xn}Nn=1 can

be viewed as a descriptor set or a matrix X ∈RD×N with the descriptors as column

vectors. Given any image i∈I, N i denotes a set of its descriptor indices. We drop the

superscript for simplicity and use N . Next, let us assume we have k= 1, ...,K visual

appearance prototypes mk ∈RD a.k.a. visual vocabulary, words, centres, atoms, and

anchors. We form a dictionary M= {mk}Kk=1 such that M∈RD×K . Additionally, if

applied, q= 1, ..., Q denotes partitions of a chosen Pyramid Matching, e.g. SPM from

[Lazebnik et al., 2006, Yang et al., 2009], DoPM, or CoPM from chapter 5. It follows

N i
q⊆N i (we write Nq for simplicity) is a subset of the descriptor indices that fall into

a given pyramid partition q of image i. Following the formalism of [Boureau et al.,

2010a], we express the mid-level coding and pooling steps in BoW as:

φn = f(xn,M), ∀n ∈ N (6.1)

ψkq = g
(
{φkn}n∈Nq

)
, ∀q = 1, ..., Q (6.2)

h = ĥ/‖ĥ‖2 , ĥ =
[
ψ1

T , ...,ψQ
T
]T

(6.3)

Equation (6.1) represents a chosen mid-level feature mapping f : RD→RK , e.g. Soft

Assignment or Sparse Coding. It quantifies the image content in terms of the visual

prototypes given in M. Each descriptor xn is embedded into the visual vocabulary

space resulting in mid-level features φn∈RK . In the following, we often refer to an nth

vector φn or directly to a kth coefficient of an nth vector φkn. One can also think of
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vectors φn forming columns of matrix Φ such that Φ∈RK×|N|. Note thatM is formed

from k-means cluster centres, later used by all mid-level coding approaches. Thus,

equation (6.1) does not include the dictionary learning step. Figure 6.1 (a) illustrates

descriptors {xn}n∈N of image i, used by the coding step in figure 6.1 (b). Next, coding

operates on each descriptor and produces corresponding mid-level features {φn}n∈N .

Equation (6.2) represents the pooling operation, e.g. Average or Max-pooling. The

role of g is to aggregate occurrences of visual words in an image. Formally, function

g : R|N | → R takes all mid-level feature coefficients φkn for visual word mk given

partition q of image i, and stores a value as a kth coefficient in a qth vector ψq ∈RK ,

denoted as ψkq. Moreover, one can think of vectors ψq as forming columns of matrix

Ψ such that Ψ∈RK×Q. Figure 6.1 (c) depicts mid-level feature coefficients {φkn}n∈Nq
which are used by the pooling step given k= 1, ...,K. Note that g acts on a given kth

row of mid-level features by aggregating occurrences of mk into a kth coefficient in ψq.

Equation (6.3) concatenates ψq for all partitions q = 1, ..., Q into ĥ ∈ RKQ. It also

normalises signature ĥ to preserve only relative statistics of visual word occurrences in

an image, irrespective of the number of descriptors contained within it. This yields the

final signature h ∈RKQ of unit length as illustrated in figure 6.1 (d). The resulting

signatures hi,hj ∈RKQ for i, j ∈ I can be directly fed to a primary-formulated SVM

classifier or used to form a linear kernel Kerij = (hi)
T ·hj . This defines the similarity

between images for kernel based classifiers such as KDA, latter used in this work.

The HA, SA, SC, LLC, and LcSA coding methods will now be described using the

terms introduced above. For simplicity, xn is referred to as x, φn as φ, and ψq as ψ

where possible. Therefore, the notation for coefficients φkn and ψkq is further simplified

to φk and ψk, respectively. Furthermore, we define the activation of anchor mk given

x as a response φk 6= 0 and the local activation as φk 6= 0 such that r2 =‖mk−x‖22
and r2 <κ for an arbitrarily chosen constant κ> 0, where k defines a neighbourhood

such that any two descriptors chosen from it have close visual appearances. Intuitively,

φk 6=0 and r2≥κ define a non-local activation.
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Figure 6.2: Illustration of (a) Hard Assignment, (b) Sparse Coding, (c) Locality-

constrained Linear Coding, (d) Approximate Locality-constrained Soft Assignment.

Descriptor vectors (triangles) are scattered on a surface of a hypersphere amongst the

anchors (crosses). Note the difference between SC and LLC.

6.2.1 Hard Quantisation a.k.a. Hard Assignment (HA)

Bag-of-Words in its simplest form employs HA that solves the following problem:

φ = arg min
φ̄

∥∥∥x−Mφ̄
∥∥∥2

2

s. t. ‖φ̄‖1 = 1, φ̄ ∈ {0, 1}K
(6.4)

In practice, equation (6.4) means that having formed a dictionary M by k-means

clustering (or any other method), every descriptor x∈X is assigned to its nearest cluster

with activation equal 1. This is illustrated in figure 6.2 (a). The `1 norm constraint

‖φ‖1 = 1 ensures that φ are histograms. Since φ can take only binary values, the `1

norm also ensures a single non-zero entry per φ. Recently, it was shown that HA with

appropriate pooling can achieve improved results [Boureau et al., 2010b, Chatfield et al.,

2011] despite its inherently high quantisation error and largely compromised smoothness

[Yu et al., 2009]. However, methods like Sparse Coding were shown to consistently

perform significantly better. Therefore, we omit HA in the following evaluations.

6.2.2 Soft Assignment (SA)

The Soft Assignment coder is already introduced in section 4.2 of chapter 4. This

approach is derived from Gaussian Mixture Model. Let us remind that K denotes
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the number of visual words in a given dictionary, mk are the visual words such that

k=1, ...,K, σ is the smoothing parameter of kernel G, and X ={xn}Nn=1 are descriptors

of a dataset. Given the simplified density estimation problem in equation (4.3), the SA

coder is equivalent to the membership probability of component k being selected given

descriptor x. We employ equation (4.4) and define SA as follows:

φk = p(k|x, σ) (6.5)

Moreover, defining ψk = 1
|N |

∑
n∈N

φkn, where φkn=p(k|xn, σ), turns such a formulation

into Visual Word Uncertainty from [van Gemert et al., 2010].

6.2.3 Sparse Coding (SC)

The goal of Sparse Coding [Lee et al., 2007, Yang et al., 2009] is to express each

descriptor vector x as a sparse linear combination of the visual words given by M.

This can be achieved by optimising the following with respect to φ:

φ = arg min
φ̄

∥∥∥x−Mφ̄
∥∥∥2

2
+ α‖φ̄‖1

s. t. φ̄ ≥ 0

(6.6)

The `1 norm over φ induces a low number of activations per descriptor, referred to

as sparsity, which can be adjusted with α. SC was found to perform well if com-

bined with Max-pooling and Spatial Pyramid Matching in [Yang et al., 2009]. Defining

ψk = max
(
{φkn}n∈N

)
in equation (6.2) renders this model equivalent to Sparse Cod-

ing from [Yang et al., 2009] except for: i) a skipped dictionary learning step, ii) a

non-negative constraint2 on φ. The image signatures in [Yang et al., 2009] are twice

as long due to pooling over positive and negative φkn respectively. It is shown later

that neglecting negative activations has no detrimental impact on the classification

performance. Figure 6.2 (b) shows that SC can activate non-local anchors.

2To impose φ≥ 0 on SC and LLC, we used LAR [Efron et al., 2004] solver from SPAMS [Mairal

et al., 2010] and Quadratic Programming [MOSEK, 2012], respectively. However, ignoring constraint

φ≥0 and correcting SC and LLC codes by φk :=max(0, φk) for k=1, ...,K yielded equally good results.
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6.2.4 Approximate Locality-constrained Linear Coding (LLC)

Locality-constrained Linear Coding [Wang et al., 2010] addresses the non-locality that

can occur in Sparse Coding. It prevents activations of visual words that are far from

descriptors. See figures 6.2 (b and c) for intuitive differences. This is formulated as:

φ = arg min
φ̄

∥∥∥x−Mφ̄
∥∥∥2

2
+ α

K∑
k=1

(
φ̄k · e

‖x−mk‖2
σ

)2

s. t. 1T φ̄ = 1

(6.7)

The squared `2 norm, expressed as a summation on the right side of equation (6.7),

penalises large φk if the corresponding mk is far from a given descriptor x. The

penalty can be adjusted by α and σ. This problem is equivalent to the formulation

from [Wang et al., 2010], except for the dictionary learning step. In practice, we solve

a fast approximate formulation:

φ∗ = arg min
φ̄

∥∥∥x−M (x, l) φ̄
∥∥∥2

2

s. t. φ̄ ≥ 0, 1T φ̄ = 1

(6.8)

Descriptor x is coded with its l-nearest neighbour anchors found in dictionary M by

NN search, a new compact dictionary is formed and used: M (x, l) = NNM (x, l) ∈

RD×l, where l�K. Hence, one has to adjust l instead of α and σ. Note, the resulting

φ∗∈Rl has length l. In practice, we re-project its elements into the full length vector

φ ∈RK as, for each atom in M (x, l), we know its position in M. A non-negativity

constraint2 is applied to φ as no classification improvement is observed if φ < 0 is

allowed. Figure 6.2 (c) depicts a local selection of anchors for LLC.

6.2.5 Approximate Locality-constrained Soft Assignment (LcSA)

Sparse Coding from [Lee et al., 2007, Yang et al., 2009] and Locality-constrained Linear

Coding from [Wang et al., 2010] are robust approaches that can learn a data manifold

by approximating it with sparse and local linear combinations of anchors, respectively.

This is achieved by constraining activations to a relevant subset of anchors. Thus,

we constrain SA to activate only the l-nearest anchors of the descriptors as in [Wang

et al., 2010, Lingqiao et al., 2011] when computing the membership probabilities. This
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Figure 6.3: The quantisation error: flow of the descriptors from their original positions

x denoted by the grid points to the corresponding reconstructed positions pointed to

by the arrows. (a) SA: the descriptors are moved to their nearest anchors ’◦’ like in

HA. (b) SA: a near-optimal smoothing factor case yielding low ξ2. (c) SA: a full

blur of the data for large σ. The reconstructed positions overlap in the centre. (d)

LLC: limited reconstruction due to low l=2. (e) LLC: optimal reconstruction within

the triangular region given l= 3. (f ) SC: the descriptors are moved to their nearest

anchors ’◦’ like in HA. Note, ‖φ‖1 = 1/α had to be rescaled to ‖φ‖1 = 1 to prepare

this plot. (g) SC: optimal reconstruction within the triangular region. (h) SC: area of

the optimal reconstruction is increased for small α at a price of non-sparsity. (i) LcSA:

reconstruction capabilities of LcSA resemble closely LLC case (d). (j ) LcSA: cost ξ2

resulting from combining equations (6.9) and (4.5), shown as a function of (σ, l).

is illustrated in figure 6.2 (d). This is referred to as Approximate Locality-constrained

Soft Assignment. Recall that M (x, l) = NNM (x, l) ∈RD×l is a set of the l-nearest

anchors of descriptor x given dictionaryM such that l�K. Limiting the membership

probability from equation (4.4) to be spanned with only l-local anchorsM (x, l) yields:

φk = p(k|x, σ, l) =


G(x;mk,σ)∑

m′∈M(x,l)G(x;m′,σ) if mk ∈M (x, l)

0 otherwise

(6.9)

Moreover, appendix A.1 demonstrates the analytical similarity between LcSA and LLC.
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6.2.6 Mid-level Coding Parameters

To achieve good performance, SC and LLC optimise a trade-off between a quantisation

loss (defined below) and an explicitly chosen regularisation penalty, e.g. sparsity as in

equation (6.6) or locality as in equation (6.7). Such a trade-off can be subjected to

additional constraints, e.g. non-negativity and an upper limit on the solution. The

quality of quantisation in these mappings is measured in accordance with the theory of

Linear Coordinate Coding [Yu et al., 2009] also described in section 4.3 of chapter 4.

We know from equation (4.5) provided in section 4.3 that transforming descriptor x

into mid-level feature φ=f(x) results in a quantisation loss ξ2 (x) a.k.a. the residual

error which depends on the choice of mapping f . Transforming the mid-level feature

back into the descriptor yields ξ2 (x). The approximation error of N descriptors is

ξ2 = 1
N

∑
n ξ

2 (xn). We assume ξ2 is synonymous with the quantisation error, which is

a source of ambiguity in the coding methods, e.g. HA or SA.

Moreover, regularisation terms must be imposed on this least squares problem employed

by the LCC family to ensure that each descriptor is coded by a representative fraction of

atoms. For instance, we observed with the SC and LLC coders that given the optimal

regularisation parameters, mid-level features from various classes of textures exhibit

high intra-class and low inter-class similarity. However, removing regularisation leads

to a sharp increase of inter-class similarity. Such mid-level features are not distinctive

enough for a pooling step to produce informative signatures.

Figure 6.3 presents how mid-level features are affected by the quantisation error. Having

coded descriptors x=[x1, x2]T ∈〈−3; 3〉2 with k=1, 2, 3 atoms mk by various methods,

the obtained codes φ are projected back to the descriptor space: x̂=Mφ. The resulting

quantisation effects are visualised as displacements between each descriptor x and its

approximation x̂. Plots (a-c) present SA with low σ (HA equivalent), optimal, and

large σ (data blur: if σ→+∞, then φk→ 1/K). Plot (d) shows LLC, which modifies

the descriptor space for l= 2. Plot (e) shows LLC yielding a good reconstruction for

l=3, however, this causes non-locality. Plots (f-h) show SC with high α (HA equivalent,

‖φ‖1 =1/α was rescaled to ‖φ‖1 =1), medium α (good trade-off), and low α at a price

of non-sparsity. Plot (i) shows LcSA approximating LLC in plot (d). Lastly, plot 6.3
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(j) shows the ξ2 cost for LcSA coder f in equation (6.9) as a function of (σ, l) yielded by

equation (4.5). Note, ξ2>0 has a unique minimum and it varies smoothly with changes

of (σ, l). Various descriptors and datasets consistently resulted in a unique minimum.

Appendix A.5 illustrates the activation spaces spanned by the coding methods.

Typically, the optimal coding parameters are determined during the cross-validation

process. We found empirically that minimising ξ2>0 w.r.t. (σ, l) in the LcSA model led

to good classification results. This can be explained by two trade-off factors: i) Extreme

σ results in either HA or the data blur as shown in plots 6.3 (a-c). Thus, measuring

ξ2 can be used to penalise selection of such extremes. ii) Usually, given the `2 norm

normalised data, descriptor x coded with the distant anchors yields approximation

x̂1 such that ‖x̂1‖2 < ‖x‖2 due to various implicit constraints of LcSA, e.g. φ ≥ 0,

‖φ‖1 =1. However, coding x with both distant and nearby anchors yields x̂2 such that

‖x̂1‖2 < ‖x̂2‖2 < ‖x‖2. Lastly, coding x with its nearby anchors only yields x̂3 such

that ‖x̂1‖2<‖x̂2‖2<‖x̂3‖2<‖x‖2. This suggests ξ2 shown in plot 6.3 (j) favours local

coding in LcSA. Thus, we combine equations (6.9) and (4.5) to find the initial σ and

l-nearest anchors:

(σ, l) = arg min
(σ̄, l̄)

N∑
n=1

∥∥∥∥∥xn − ∑
m∈M(xn ,̄l)

G(xn;m, σ̄)∑
m′∈M(xn ,̄l,)G(xn;m′, σ̄)

·m

∥∥∥∥∥
2

2

(6.10)

Such evaluated parameters were found to provide good initial estimates. Next, (σ, l) can

be adjusted by cross-validation for optimal classification performance. Similar approach

demonstrated good empirical results for SA in chapter 4. Appendix A.2 explains how

to efficiently optimise the cost in equation (6.10) in order to find parameters (σ, l).

6.2.7 Computational Efficiency

When embedding descriptors (e.g. 6K per image) of a medium scale dataset to a

vocabulary space (e.g. 16K atoms), the computational cost of coding becomes a major

factor in experiments. Thus, this section details the computational complexity of HA,

SA, LcSA, SC, and LLC and proposes an approach which increases the speed of coding.

HA. It requires the NN search which scales linearly with the number of descriptors N

and the number of visual words K. This results in a complexity O (N×K).
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SA. Soft Assignment computes: i) Gaussian-based distances from a descriptor to each

visual word, ii) the sum of such distances, iii) the ratio of (i) to the total distance (ii)

as in equation (4.4). Therefore, O (N×3K)=O (N×K).

SC. The complexity of Sparse Coding based on the Feature Sign [Lee et al., 2007] solver

is expressed as O (N×K ×S), where S is the average number of non-zero elements in

the mid-level features. The complexity of the Least Angle Regression [Efron et al., 2004]

based solver proposed in [Mairal et al., 2010] is O(N×S3 + N×K×S2 + N×K×S)=

O(N×K×S2) for S � K.

LLC. Because Locality-constrained Linear Coding is O(N×K2) complex, Approximate

LLC was also introduced in [Wang et al., 2010]. It has a more favourable complexity

O(N×K ×log l + N×l2)=O (N×K × log l) for l� K nearest anchors.

LcSA. The speed of Approximate Locality-constrained Soft Assignment is restricted by

the NN search based on the partial sort algorithm with complexity O (N×K×log l),

where l is the number of nearest anchors in the search. Summing distances and

computing the ratio of Gaussians in equation (6.9) becomes an efficient task with

complexity O (N×2l). Hence, the total complexity is O (N×K×log l + N×2l) =

O (N×K ×log l). Note that LcSA becomes noticeably faster than SA for log l � 3

since N×K×log l� N×3K.

parent nodes
k-means cells
dilated boundary

l-nn
centries

of

cluster centres
descriptor
reconstruction

(a) (b)

Figure 6.4: (a) Hierarchical NN: l-nearest anchors of a descriptor found in its nearest

k-means cluster. (b) Dilating cluster boundaries improves quantisation: a descriptor

and its reconstruction are brought closer.
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FHNNS. To increase coding speed, we propose a Fast Hierarchical Nearest Neighbour

Search method that uses an approximate dictionary search for the l-nearest neighbours

of a to-be-coded descriptor x to form a compact dictionary M (x, l). Figure 6.4 (a)

shows a hierarchical k-means vocabulary with two levels of depth. The parent node

which is closest to x is found and then the l-nearest children. However, such a process

results in a high quantisation jitter and a poor selection of anchors. Thus, we propose

to share k-means children nodes located along boundaries between their parent nodes.

The dilation of k-means boundaries is shown in figure 6.4 (b). A similar approach

to NN search is used by Spill Trees [Liu et al., 2004]. To measure the corresponding

quantisation noise the formula (4.5) from chapter 4 is used over a set of descriptors.

In detail, for every k-means parent node m′ ∈M′ its dilated set of children M̂ (m′, `)

is defined as M̂ (m′, `)=NNM (m′, `): the `-nearest neighbours of each m′ are chosen

from the dictionaryM representing the original child nodes of k-means. To increase the

speed of LcSA and LLC, we combine two search operations such thatm′=NNM′ (x, 1)

indicates the nearest parent node m′ of x and M (x, l) = NNM̂(m′,`) (x, l) forms a

compact dictionary for x. For SC, we take the nearest parent node m′ of x and code x

using the dilated dictionary M̂ (m′, `). Varying `=1, ...,K affects a trade-off between

speed and accuracy. In all cases, mid-level features remain of length K, rather than `,

4K
/1

2
8D

SA LcSA LLC SC

2.26 0.24 0.44 3.61

LcSA `=256 LcSA `=512 LcSA `=1024 LcSA `=2048

0.036 0.046 0.074 0.136

16
K

/1
9
2D

SA LcSA LLC SC

13.8 1.06 1.55 32.5

SC `=1024 SC `=2048 SC `=3072 SC `=4096

3.69 8.74 14.7 21.8

Table 6.1: Computational time (in seconds) required to code 1K SIFT descriptors to

mid-level features. (Top) 4K dictionary and 128D descriptors. (Bottom) 16K dictio-

nary and 192D descriptors.
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as we re-project them for each atom in M̂ (m′, `) to its corresponding position in M.

The complexity of LcSA and LLC becomes O(N×`p +N×`×log l)=O(N×`×log l),

for `p � `� K and l� `, where `p and ` are a number of parent nodes3 and children

per node, respectively. The complexity of SC is thus O(N×`×S2).

Timing. Table 6.1 shows the computation times on a single 2.3GHz AMD Opteron

core that are required to code 1K SIFT descriptors of 128 and 192 dimensions to mid-

level features for 4K and 16K dictionaries. LcSA can run 4 times faster without a loss

in its classification performance, as shown in section 6.4.3. SC also gains on speed.

6.3 Overview of Pooling Approaches

Pooling converts mid-level features into final image signatures by aggregating occur-

rences of visual words in each image. Formally, equation (6.2) expresses its place in the

context of Bag-of-Words. Pooling is performed in each pyramid partition q of image i,

N i
q denotes a subset of descriptor indices to be processed. We abbreviate N i

q to N and

ψq to ψ for clarity. Moreover, the notation for coefficients ψkq is further simplified to

ψk. Lastly, we refer to φkn as a kth coefficient of an nth vector φn.

6.3.1 Average (Avg), Max-pooling (Max), Mix-order Max-pooling

(MixOrd), and an `p norm based trade-off (lp-norm)

Average and Max-pooling are intuitively introduced in section 6.1 and referred to in

sections 6.2.2 and 6.2.3. To summarise, Average pooling is expressed as the average

over responses to visual word mk:

ψk =
1

|N |
∑
n∈N

φkn (6.11)

Maximum pooling intuitively selects the largest value between mid-level features re-

sponding to visual word mk:

ψk = max
(
{φkn}n∈N

)
(6.12)

3Note that the `p symbol used in this context is not an `p norm.
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Therefore, the fundamental difference is that Average pooling counts all occurrences

of visual word mk in the image while Max-pooling only registers a presence of mk.

Max-pooling has been shown to be a lower bound of the likelihood of at least one visual

word mk being present in image i [Lingqiao et al., 2011]. This however does not clarify

whether the lower bound formulation is more suited for classification than the exact

analytical solution.

Further, Mix-order Max-pooling is proposed in [Lingqiao et al., 2011] as a lower bound

of at least s visual words mk being present in image i. This is achieved by sorting all

mid-level feature entries corresponding to a visual word mk and selecting exactly the

sth largest value. This process is performed for k= 1, ...,K and it results in an image

signature. Furthermore, selecting t different values of s (e.g. s1>s2>...>st) yields t

different image signatures per image. They form separate kernels that can be combined

using kernel methods [Lingqiao et al., 2011].

Lastly, a trade-off between Average and Max-pooling was proposed in [Boureau et al.,

2010b]. It employs an `p norm with parameter p which varies the solution between

Average and Max-pooling for p=1 and p→∞, respectively:

ψk =

(
1

|N |
∑
n∈N
|φkn|p

)1/p

(6.13)

6.3.2 Theoretical expectation of Max-pooling (MaxExp) and at least

one visual word mk present in image i (ExaPro)

Likelihood based pooling methods have recently shed new light on the role of the pooling

step in Bag-of-Words. It was shown in [Boureau et al., 2010b] that Max-pooling can be

predicted analytically by drawing mid-level features (for a chosen mk) from Bernoulli

distribution under the i.i.d. assumption. We assume the probability p for an event

(φkn=1) and 1−p for (φkn=0). Probability of all N̄ = |N | mid-level features to be

{(φk1 =0) , ..., (φkN̄ =0)} amounts to (1−p)N̄ . Similarly, the probability of at least one

mid-level feature event (φkn=1) can be thought of as applying a logical ’or’ operation
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{
(φk1 =1)

∣∣∣ ... ∣∣∣ (φkN̄ =1)
}

and is defined as:

N̄∑
n=1

(
N̄

n

)
pn(1− p)N̄−n = 1− (1− p)N̄ (6.14)

Estimating p as the average of mid-level feature activations for a given mk results in

the final MaxExp formulation:

ψk = 1−

(
1− 1

|N |
∑
n∈N

φkn

)N̄
, N̄ = |N | (6.15)

Next, similar assumptions to MaxExp were taken in [Lingqiao et al., 2011]: mid-level

features represent random variables drawn from a feature distribution under the i.i.d.

assumption. Therefore, the probability of at least one visual word mk present in image

i (ExaPro) is defined as:

ψk = 1−
∏
n∈N

(1− φkn) (6.16)

Note that the probabilistic interpretation of ExaPro also holds for MaxExp due to the

way it acts on Average pooling. The next section shows that Power Normalisation used

for Fisher Vector Encoding [Perronnin et al., 2010] acts similarly on Avg.

6.3.3 Power Normalisation a.k.a. Gamma Correction (Gamma)

Power Normalisation has been successfully applied to Intersection Kernels [Boughorbel

et al., 2005], Fisher Vector Encoding [Perronnin et al., 2010], and in image retrieval

[Jégou et al., 2009]. This is also known as Gamma Correction. Such a correction is

shown to tackle burstiness: a phenomenon that a given visual word appears in an image

more often than is statistically expected [Jégou et al., 2009]. Gamma acts on Average

pooling to improve the similarity of the image signatures belonging to each class of

objects and it is expressed as:

ψk =

(
1

|N |
∑
n∈N

φkn

)γ
(6.17)

The correction factor 0 < γ ≤ 1 is usually found by cross-validation. Note, setting

γ = 0.5 changes a dot product between such formed vectors ψ into Bhattacharyya

coefficient [Jebara et al., 2004]. As the nature of Gamma is not explored in previous
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Figure 6.5: Illustration of the pooling correction functions: MaxExp, AxMin, and

Gamma. (a) Bar plot is a histogram of Average pooling avgn(φkn) over n=1, ..., N for

k= 1, ...,K on Caltech101. AxMin and Gamma (if magnified ×8) curves are approx-

imations of MaxExp. Note the logarithmic scale. (b) Pooling methods as functions

of Average pooling (linear scale). (c) `2 norm normalised MaxExp and Gamma as

functions of Avg on a dictionary K = 2 atoms (response h1 for m1 is showed while

we skip h2 for clarity). (d) Histogram of Average pooling for k= 1, ...,K on Flower17

is rearranged by MaxExp, AxMin, and Gamma, then the `2 norm normalised. This

results in similar distributions (null entries not shown).

studies [Boughorbel et al., 2005, Perronnin et al., 2010, Jégou et al., 2009], our study

found it closely related to MaxExp. According to equations (6.15) and (6.17), these

two corrections are functions of Average pooling. Thus, the best performing correction

curves were plotted on Caltech101 in figure 6.5 (a, b). Both MaxExp and Gamma

×8 (magnified ×8) have a similar appearance. They rapidly expand input intervals
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〈0; 0.0005〉 and 〈0.0005; 0.001〉 having equal lengths to output intervals 〈0; 0.8〉 and

〈0.8; 0.98〉 of two different lengths 0.8 and 0.18. Hence, the importance of low averages

of activations increases when compared to the strong cases. The similarity of MaxExp

and Gamma (not to be confused with Gamma ×8) becomes clear in figure 6.5 (c) due to

the `2 norm normalisation as in equation (6.3). Averages of 2D mid-level features are

used as the inputs for MaxExp and Gamma. Only γ is adjusted for the best fit between

two curves. The resulting `2 norm normalised histogram bins h1 =ψ1/||ψ||2 are shown.

With the `2 norm handling the scaling, MaxExp and Gamma become similar.

To validate whether Gamma and MaxExp act similarly in practice, a registration ex-

periment was conducted. Assume ĥexpi are known image signatures generated with

MaxExp pooling for its known optimal N̄ , while ĥγi are corresponding signatures gen-

erated with Gamma pooling for various candidates γ̄. An unknown parameter γ of ĥγi

is sought that minimises the least squares error between image signatures of MaxExp

and Gamma for images i ∈ I:

γ = arg min
γ̄

∑
i∈I

∥∥∥∥∥ ĥexpi

‖ĥexpi ‖2
−

ĥγ̄i

‖ĥγ̄i ‖2

∥∥∥∥∥
2

2

(6.18)

Indeed, section 6.4.2 later shows that the best performing γ determined by cross-

validation matches closely γ found by optimising the target in equation (6.18).

6.3.4 Modelling the Impact of Descriptor Interdependency on Ana-

lytical Pooling

The standard approach to Bag-of-Words typically assumes the descriptor extraction on

a dense grid [van Gemert et al., 2008, 2010, Philbin et al., 2008, Lingqiao et al., 2011,

Yang et al., 2009, Wang et al., 2010, Gao et al., 2010]. Thus, neighbouring descriptors

largely overlap with each other. MaxExp and ExaPro pooling assume that activations

φk of anchor mk are independent in each image. However, if descriptor x results in

activation φk of mk, descriptors significantly overlapping with x should also result in

activations φk of mk. The same holds for repeatable visual patterns. Thus, we expect

the average activation p (Average pooling) in equation (6.14) to be overestimated and

p should be decreased by some factor µ, e.g. pnew := (1−µ) p, where 0 ≤ µ < 1. To
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correct MaxExp, the parameter N̄ in equation (6.15) is adjusted such that 1≤N̄≤|N |;

this has the same effect as decreasing p. Gamma pooling can be corrected by varying

γ or predicting it by equation (6.18) from the optimal N̄ of MaxExp. In the next

section, the descriptor interdependence is shown in a simulation, with an approach to

take further advantage of it.

First, let us define a close approximation of MaxExp that has a parameter β accounting

for the interdependence of descriptors. Approximate Pooling (AxMin) is expressed as:

ψk = min (1, βp) = min

(
1, β

1

|N |
∑
n∈N

φkn

)
, 1 ≤ β ≤ |N | (6.19)

The AxMin curve, shown in figure 6.5 (a, b) on page 98, follows closely MaxExp

and represents a linear magnifying function with a saturation threshold. It can be

shown that the steepness β of AxMin and N̄ of MaxExp are related such that β≈ N̄ .

Parameters β and µ are related by β = |N | (1−µ), hence adjusting β accounts for

the interdependence of descriptors. AxMin pooling implies that the confidence in the

visual word mk being present in image i can increase until it reaches the saturation

threshold (full confidence). Once reached, any strong variations have no effect which

discards the noise. This also prevents the counting of any further occurrences of mk.

Such a behaviour increases intra-class similarity of the image signatures and therefore

resembles MaxExp and Gamma methods.

To summarise MaxExp, AxMin, and Gamma, figure 6.5 (d) on page 98 presents a

distribution of coefficients of Average pooling on Flower17 by binning all ψk for k =

1, ...,K for all images. Next, Average pooling is corrected with MaxExp, AxMin, and

Gamma. The `2 norm normalisation is applied per image and all signature coefficients

hk are binned. The similar distributions of MaxExp, AxMin, and Gamma highlight

their closeness as shown in sections 6.3.3 and 6.3.4.

6.3.5 Cross Vocabulary Leakage, Descriptor Interdependence, and

Improved Pooling (@n)

To understand why Max-pooling is a solid performer despite it being merely a lower

bound of at least one visual word mk present in image i, the primary factors that can
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Figure 6.6: Toy experiment with 21/21 bounding boxes of faces/backgrounds. (a)

Histograms of SC activations φ1 for both foreground and background descriptors given

visual word m1 that represents a nose. (b) Top 1, 7, and 100 largest activations φ1

given m1 per foreground bounding box as functions of spatial deviation r̄ between the

descriptors inducing these activations. (c) 6 histograms of activations φ1 given m1

for arbitrarily chosen 3 foreground and 3 background bounding boxes denoted as (F)

and (B). Values of Average pooling are marked with circles and triangles, respectively,

while Avg@n = 40 with crosses and diamonds. Note small separation distances between

circles and triangles and large between crosses and diamonds. (d) Pooling methods are

used to separate 21 faces from 21 backgrounds. Histograms of pooling responses ψ1 (one

ψ1 per bounding box) given m1 are shown. Foreground and background are labelled

as (F) and (B). Refer text for details.

affect pooling are discussed: i) cross vocabulary leakage, ii) propagated measurement

error, iii) descriptor interdependence. These factors are addressed by an improved pool-
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ing strategy called @n. Note, terms such as activation and local/non-local activation

have been defined in section 6.2.

Leakage. Cross vocabulary leakage can be defined as activation φk 6= 0 of visual

word mk given descriptor x that should not occur but it does due to: a) the inherent

nature of a particular mid-level coding to trigger non-local activations, b) features not

representing mk but having visual appearances similar to mk, hence triggering φk.

Leakage activation φk 6=0 may have an associated correct activation φk′ 6=0 for k 6= k′,

hence cross vocabulary terminology.

Soft Assignment is used to illustrate case (a). Let us assume descriptor x such that

x=mk. This results in activations not related to mk because p(k∗|x, σ)> 0 for any

mk
∗ ∈M\{mk}. Similar observations hold for x 6=mk. SA results in large amounts

of such a leakage, while LLC and LcSA circumvent this problem by suppressing most

non-local activations explicitly in equations (6.8) and (6.9). Sparse Coding, however,

allows non-local activations.

To illustrate leakage in SC, a toy experiment is introduced. 21 images of a subject’s

face were captured at similar scales and rotations, backgrounds varied. We applied

SIFT (4px grid interval, 16px radii). Next, a descriptor from the first image centred at

the tip of the subject’s nose was selected. With 32×32 pixel area, it does not cover eyes,

lips, or cheeks. It was added as the first element m1 to a dictionary of 4K k-means

atoms trained on background images. Descriptors within manually annotated bounding

boxes (160×190 pixel) of faces are deemed foreground samples. Further, 21 bounding

boxes (160×190 pixel) were selected at random from backgrounds. Figure 6.6 (a)

shows histograms of SC activations φ1 for both foreground and background descriptors.

Foregrounds tend to yield the majority of the large responses. Note that below a certain

value of φ1, indicated with a vertical bar, background descriptors respond to m1 more

often than foreground descriptors. This shows the leakage case (a, b) in practice.

Propagation Error. Having formulated the leakage, the propagation error of MaxExp

is computed w.r.t. the average activation φk = 1
|N |

∑
n∈N

φkn on its input. Applying the

first derivative to eq. (6.15) w.r.t. φk and assuming a measurement uncertainty ∆φk

representing the leakage error leads to: ∆ψk = ∆φk ·N̄ (1−φk)N̄−1. Let us assume N̄
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to be equal to the average count of descriptors per image, e.g. N̄ = 6000, and the

leakage error ∆φk=10−5. For the sample means φk=10−5 and φk=10−4 the absolute

propagation errors are ∆ψk = 0.056 and ∆ψk = 0.032 respectively. Larger ∆ψk given

smaller φk suggests that MaxExp is sensitive to variations ∆φk for small φk and can

magnify small perturbations, e.g. the leakage. Equivalent findings apply to Gamma

and ExaPro. Note that Max-pooling selects only the largest φkn over all n∈N . Thus,

it can suppress the leakage but it may be less robust to abrupt changes of large φkn

when compared to analytical pooling. Hence, a compromise between Max-pooling and

analytical methods is desired.

Descriptor Interdependence. Section 6.3.4 discussed the descriptor interdepen-

dence and explained how pooling can account for it. Prior knowledge that neighbour-

ing descriptors tend to activate similar visual words can be clearly visualised with our

toy example. Let us assume that any two neighbouring descriptors located no more

than 16px apart are similar as they overlap heavily. Otherwise, if located more than

16px apart, they have little or no overlap because the descriptor radius is 16px. Thus,

descriptors can appear similar only if they describe repeatable image content. Figure

6.6 (b) on page 101 shows three cases of the top 1, 7, and 100 largest activations φ1

per foreground bounding box responding to our first visual word (the subject’s nose).

Spatial deviation of the descriptor locations (also per bounding box) given 1, 7, and

100 largest φ1 is indicated along the r̄ axis. Interestingly, responses for the top 1 and

7 largest activations are induced by descriptors that are mostly up to 16px apart from

each other. Allowing the top 100 largest activations reveals that descriptors inducing

them are located up to 60px apart. The majority of such descriptors do not cover the

subject’s nose. This suggests that rejecting low value activations reduces false positives.

Improved pooling (@n). Reducing the leakage, abrupt changes in large φkn, and

utilisation of the descriptor interdependency are addressed by simply pooling over the

most significant activations given a visual word and the descriptors. This can be easily

incorporated into MaxExp, ExaPro, Gamma, and AxMin pooling schemes given in

equations (6.15), (6.16), (6.17), and (6.19) by using the partial sort that selects only

the top @n largest values φkn over all n ∈ N to process, where @n is a parameter.

It follows that Max-pooling is a special case, such that @n = 1, and a lower bound
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of ExaPro that can reject the leakage. Hence, @n is a trade-off between Max-pooling

(@n=1) and a chosen analytical approach, where 1≤@n≤|N |. The next section shows

that mid-level approaches benefit from pooling the top @n most likely activations.

Between-class separation. The overview of the pooling approaches concludes with

the toy example introduced in section 6.3.5 by showing that the @n scheme increases

the separation between positive and negative classes compared to other approaches.

Foreground bounding boxes of faces are represented by the first atom in the dictionary.

This was extracted from the subject’s nose as previously outlined. Figure 6.6 (c)

on page 101 presents 6 histograms of activations φ1 for the first atom given three

arbitrarily chosen foreground and background bounding boxes. The resulting values of

Average pooling are indicated in the figure with circles and triangles corresponding to

the foreground and background distributions respectively. The values of Avg@n= 40

are marked with crosses and diamonds. Note that Avg@n = 40 achieves a superior

separation of foreground and background markers compared to Avg. With well adjusted

@n, Avg@n (diamonds) penetrates the background distributions far to the left rejecting

noise (unlike e.g. Max-pooling). Foreground distributions (crosses) are penetrated

only marginally to the left. Thus, exploiting the shapes of these distributions improves

separability. Figure 6.6 (d), also on page 101, illustrates pooling methods employed to

separate the 21 foreground faces from 21 backgrounds using only pooling responses ψ1

(one per bounding box) corresponding to the first visual word. The best separation

(non-overlapping histograms) is achieved by AxMin@n=7 and the worst separation by

Max-pooling (histograms overlap).

6.4 Experimental Section

The coding and pooling methods are evaluated on the Caltech101 [Fei-fei et al., 2004],

Flower17 [Nilsback and Zisserman, 2008b], and ImageCLEF11 [Nowak et al., 2011]

datasets. Approximate Locality-constrained Soft Assignment (LcSA), Approximate

Locality-constrained Linear Coding (LLC), Sparse Coding (SC), and Soft Assign-

ment (SA) are compared. Specifically, the baseline performance of selected pooling

methods is shown in section 6.4.2 and their similarity is determined using the registra-
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tion from section 6.3.3. Next, the coding and pooling methods are evaluated in section

6.4.3. LcSA, LLC, and SC mid-level features are processed by Max-pooling (Max),

Gamma Correction (Gamma), theoretical expectation of Max-pooling (MaxExp), its ap-

proximation AxMin, and at least one visual word mk being present in image i (ExaPro).

Mix-order Max-pooling (MixOrd) and the `p norm (lp-norm) are also briefly investi-

gated. The @n scheme from section 6.3.5 is applied to AxMin, ExaPro, and MaxExp

to demonstrate it can improve classification performance. The impact of the dictionary

size and performance of the coding optimisations from section 6.2.7 are also measured.

6.4.1 Experimental Arrangements and Datasets

The Caltech101 set [Fei-fei et al., 2004] consists of 101 classes of objects which are

aligned to the centres of images, as well as a separate background class. The majority

of evaluations are performed with 15 training images per class (unless otherwise stated).

The Flower17 set [Nilsback and Zisserman, 2008b] of 17 flower classes was used for

further evaluations (data splits are supplied for this corpus).

The ImageCLEF11 Photo Annotation set [Nowak et al., 2011] is a challenging collection

of images represented by 99 concepts of a varied nature, including complex topics, e.g.

party life, funny, work, birthday. Unlike sets of objects, this challenge aims at annota-

tion labels that correspond to human-like understanding of a scene. ImageCLEF11 is a

subset of MIRFLICKR with vastly improved annotations which enables better classifi-

cation [Huiskes and Lew, 2008, Huiskes et al., 2010]. To evaluate the mid-level coding

and pooling methods in a simple framework, only Opponent SIFT on a dense grid was

used for this set. Only the visual annotation was used in this study. Moreover, the

training set was doubled by left-right flipping training images [Chatfield et al., 2011].

The PascalVOC07 set [Everingham et al., 2007] consists of 20 classes of objects of

varied nature, e.g. human, cat, chair, train, bottle. This is a challenging collection of

images with objects that appear at variable scales and orientations, often in difficult

visual contexts and backgrounds, being frequently partially occluded. The training,

validation, and testing splits as provided for this corpus.
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Dataset
Splits Train+Val. Test Total Dict. Descr. type/

no. samples samples images size dimensions

Caltech101 10x 12+3=15/24+6=30 rest 9144 4K SIFT/128D

Flowers17 3x 680+340=1020 340 1680 4K
}

Opp. SIFT/
192DImageCLEF11 1x 6K+2K=8K 10K 18K 16K

PascalVOC07 1x 2501+2510=5011 4952 9963 4K-40K SIFT/128D

Descr. Radii Descr. Spatial/other Kernel Classifier
interval (px) per img. schemes types used

Caltech101 4,6,8,10px


16,24,
32,40

5200 none/SCC/SPM
linear multiclass

Flowers17 8,14,20,26 7900 SCC

ImageCLEF11 8,12,16,20 4400

{
linear/
χ2
RBF

SCC/SPM/
DoPM

multilabel
PascalVOC07

{
4,6,8,10,
12,14,16

{
12,16,24,32,
40,48,56

19420 linear

Table 6.2: Summary of the datasets, descriptor parameters, and experimental details.

To summarise the experimental arrangements, a variety of parameters are collected in

the given above table 6.2.

Dictionary. K-means was used throughout the experiments. However, Fast Hierarchi-

cal Nearest Neighbour Search, described in section 6.2.7, employs 64×64 and 128×128

hierarchical k-means on Caltech101 and ImageCLEF11. Moreover, Online Dictionary

Learning for SC [Mairal et al., 2010] is used to train dictionaries for PascalVOC07.

Dataset bias. Spatial relations in images were exploited by either Spatial Coordi-

nate Coding (SCC) described in chapter 5 or Spatial Pyramid Matching (SPM) from

[Lazebnik et al., 2006]. SPM used 4 levels of coarseness with 1×1, 2×2, 3×3, and 4×4

grids on Caltech101 and IamgeCLEF11. Also, SPM was set to 3 levels of coarseness

with 1×1, 1×3, 3×1, and 2×2 grids for PascalVOC07. Dominant Angle Pyramid

Matching (DoPM) from chapter 5 was used to exploit dominant edge bias in Image-

CLEF11 and PascalVOC07. DoPM used 5 levels of coarseness with 1, 3, 6, 9, and 12

grids. Moreover, DoPM employed SCC by default for PascalVOC07.

Kernels. Linear kernels Kerij = (hi)
T ·hj were used, where hi,hj ∈RKQ are image

signatures for i, j∈I. The χ2 distance merged with the RBF kernel (χ2
RBF ) defined as

Kerij =exp [−ρ2
∑

k(hki − hkj)2/(hki + hkj)] was also used, 1/ρ is the RBF radius.

Classifier. Multi-class KDA [Tahir et al., 2009] was applied to both Clatech101 and

Flower17 to process kernels formed from different mid-level feature and pooling variants.
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Mean Accuracy is the reported performance measure. Multi-label KDA [Tahir et al.,

2009] was applied to ImageCLEF11 and PascalVOC07, as it was previously found to

be a robust performer on these sets [Tahir et al., 2010]. Due to the multi-label nature

of ImageCLEF11, Mean Average Precision (MAP) is used to report the performance.

6.4.2 Baseline Performance and Registration between Gamma/AxMin

and MaxExp.

The baseline performance of LcSA mid-level coding paired with various pooling meth-

ods is determined for Caltech101 (15 training images/class, no spatial information).

Several sets of image signatures are computed on the training data for Gamma, AxMin,

and MaxExp pooling given several values of their parameters γ, β, and N̄ . Next,

registration between the signatures of Gamma/AxMin and MaxExp is performed by

minimising equation (6.18) from section 6.3.3. For each N̄ , a corresponding γ and β

is found. Figure 6.7 (a) shows the classification results on both validation and test

sets. Results for MaxExp, Gamma, and AxMin pooling are shown as functions of the

N̄
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Figure 6.7: Baseline LcSA mid-level coding (Caltech101, 15 training images/class,

no spatial information, linear kernels). (a) LcSA with Max, MaxExp, Gamma, and

AxMin pooling. Gamma and AxMin are brought to the MaxExp parameter space N̄

by registration using equation (6.18) from section 6.3.3. Dashed and solid curves show

the validation and test results. (b) Corresponding low average registration distance

between Gamma/AxMin and MaxExp signatures highlights their closeness.
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common parameter N̄ due to the registration. The three curves shown have peak per-

formance for the same value of N̄ , indicating that Gamma and AxMin act on mid-level

features similar to MaxExp. This supports our discussion in sections 6.3.3 and 6.3.4

regarding the common theoretical basis of these methods. Figure 6.7 (b) shows the av-

erage Euclidian registration distance between Gamma/AxMin and MaxExp signatures

as a function of parameters γ and β. Parameters γ = 0.32 and β = 2200 indicate the

attained minima and correspond to the optimal N̄=2000 selected from plot 6.7 (a).

Further, figure 6.7 (a) shows the baseline Max-pooling accuracy of 55.1% on the test

set. Gamma improved on this score by 3.4%, reaching 58.5% accuracy. The Average

pooling is not reported in the following sections as it scored only 42.6% accuracy and

consistently underperformed. Note that peaks in accuracy on the validation and test

sets match each other closely. Thus, only performance achieved on test sets is reported

in further sections. However, various parameters of the classification pipeline were

determined during cross-validation on validation sets.

Lastly, figure 6.8 shows the classification results for the baseline Max-pooling as a func-

tion of LcSA coding parameters σ and l, respectively. Caltech101 (15 images/class,

Spatial Pyramid Matching) and ImageCLEF11 (Spatial Coordinate Coding) were eval-

uated both on linear kernels. The best coding parameters, indicated by crosses, seem to

correlate well with the minima of ξ2, as indicated by diamonds. The above parameters

were found by evaluating equation (6.10) given 156K descriptors per dataset that were

drawn at random.
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Figure 6.8: ξ2 quantisation loss (dashed curves) and classification results (solid curves)

as functions of σ and l. We varied (a) σ, (b) l on Caltech101, (c) σ on ImageCLEF11.

Diamonds and crosses indicate the minima of ξ2 and the best results.
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Figure 6.9: Performance of mid-level coding methods LcSA, LLC, and SC given pool-

ing methods (Caltech101, 15 images/class, Spatial Coordinate Coding, linear kernels).

The following are (a) baseline Max-pooling, (b) MaxExp pooling as a function of N̄ ,

(c) its close approximation AxMin pooling w.r.t. β, (d) Gamma pooling given γ, (e)

AxMin@n=15 as a function of β, (f) ExaPro@n for positive (in solid) and positive-

negative activations (SCPN ) of SC as discussed in section 6.2.3, and (g) MixOrd pooling.

6.4.3 Evaluations of Mid-level Coding and Pooling Methods

We describe now how the coding and pooling methods performed in a practical classi-

fication scenario. The impact of pooling parameters on the results is shown first. They

are indicated in plots, e.g. N̄ , β, @n. Next, the best scores of each coding and pooling

pair are reported to facilitate comparisons, e.g. @n=3, 5, or 7 means @n is fixed in a

given experiment. Additional components and kernel choices are also indicated.

Caltech101. Figure 6.9 introduces results for the coding and pooling methods as

functions of the pooling parameters (15 training images/class, Spatial Coordinate Cod-

ing). Note that there are no erratic variations in plots. The best performance for each

method corresponds to the peak of each curve (peaks on the validation and test sets

also matched each other). Plot 6.9 (a) shows that the baseline Max-pooling yields

68.0±0.5%, 66.6±0.4%, and 66.3±0.3% accuracy for SC, LLC, and LcSA, respec-
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tively. Plots 6.9 (b-d) show the accuracy for MaxExp, AxMin, and Gamma. SC yields

70.4±0.4% accuracy for all three schemes. LLC and LcSA achieve 67.7±0.5% accu-

racy with AxMin and Gamma, respectively. Improvements over Max-pooling given

SC, LLC, and LcSA amount to 2.4%, 1.1%, and 1.4%, respectively. Note that MaxExp

scored best for N̄ ≈ 3000< 5200 (mean descriptor count). Figure 6.9 (e) shows that

AxMin@n=15 with SC yields 71.6±0.4% giving a 3.4% improvement over Max-pooling

due to the @n scheme. LLC and LcSA score 68.3±0.4% and 68.1±0.5%. Figure 6.9 (f)

shows scores for ExaPro@n and SC that amount to 70.8±0.3% and 70.6±0.3% given the

positive and positive-negative activations respectively. As suggested in section 6.2.3,

no benefits of allowing φk<0 were observed. Next, plot (g) shows MixOrd given LcSA

(t= 1, 3, 5, 7 signatures per image were combined as described in section 6.3.1). This

resulted in an 0.8% increase over Max-pooling. Not included in the plots, lp-norm and

LcSA yields 66.4±0.5% at best, ExaPro and LLC yields 68.2±0.5%.

Figure 6.10 shows additional performance results of coding and pooling (15 training

images/class, Spatial Pyramid Matching). Plot 6.10 (a) shows that the baseline Max-

pooling scores 74.0±0.3%, 72.0±0.5% and 70.1±0.4% given SC, LLC, and LcSA.

Plots 6.10 (b-d) show scores for MaxExp, AxMin, and Gamma. Performance of SC

and LLC deteriorated for these three schemes. LcSA scores 70.8±0.5%, yielding a
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Figure 6.10: Performance of mid-level coding methods LcSA, LLC, and SC given

pooling methods (Caltech101, 15 images/class, Spatial Pyramid Matching, linear ker-

nels). SC, LLC, and LcSA are paired with (a) baseline Max-pooling, (b) MaxExp, (c)

AxMin, (d) Gamma, (e) AxMin@n=3, and (f) ExaPro@n. SCPN and LLCPN show

results for SC and LLC given the positive-negative activations.
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small improvement. Plot 6.10 (e) shows the positive impact of AxMin@n=3 on the

coding methods. SC and LLC improve marginally from 74.0±0.3% and 72.0±0.5%

given Max-pooling to 74.6±0.4% and 72.4±0.5% accuracy. LcSA yields 71.9±0.4%

giving a 1.8% improvement over Max-pooling. Plot 6.10 (f) shows ExaPro@n with SC

reaching 74.5±0.4% and LLC achieving 72.1±0.3%. Note that allowing positive-negative

activations does not improve the performance. Not in the plots, lp-norm and MixOrd

yield 70.3±0.3% and 70.1±0.4% at best. Table 6.3 summarises the best scores achieved

by this study on Caltech101 (15 and 30 training images/class). See appendix A.4 for

a statistical significance test. Our results can be compared to various results achieved

by others in table 6.4. The best results reported in the literature are Group-Sensitive

Multiple Kernel Learning (GS-MKL) [Yang et al., 2012a] with performance of 84.3%,

Discriminative Affine Sparse Codes (ASIFT) [Kulkarni and Li, 2011] with 83.3%, Multi-

way SVM on appearance and shape features (M-SVM) [Bosch et al., 2007] with 81.3%,

and Graph-matching Kernel (GMK) [Duchenne et al., 2011] with 80.3% accuracy.

SA LcSA LcSA
AxMin@n AxMin@n Max

SCC (15) 67.8±0.6 68.1±0.5 66.3±0.3
SPM (15) 71.6±0.4 71.9±0.4 70.1±0.4
SPM (30) 78.6±0.5 78.8±0.4 77.8±0.3

LLC SC SC
AxMin@n AxMin@n Max

SCC (15) 68.3±0.4 71.6±0.4 68.0±0.5
SPM (15) 72.4±0.5 74.6±0.4 74.0±0.3
SPM (30) 79.5±0.5 81.3±0.6 80.4±0.6

Table 6.3: Summary of our best re-

sults on Caltech101. The first col-

umn indicates how the spatial infor-

mation was injected. Numbers of

training images per class are indi-

cated in brackets.

[Boureau et al., 2010b] HA, 1K, MaxExp 71.8±0.8
[Chatfield et al., 2011] HA, 8K, Avg+χ2 74.2±0.6

[Chatfield et al., 2011] SA, 8K, Avg+χ2 75.9±0.6
[Lingqiao et al., 2011] LcSA, 1K, Max 76.5±0.7

[Yang et al., 2009] LLC, 1K, Max 73.4
[Chatfield et al., 2011] LLC, 8K, Max 76.9±0.4

[Yang et al., 2009] SC, 1K, Max 73.2±0.5
[Boureau et al., 2010b] SC, 1K, Max, MF 75.1±0.9
[Boureau et al., 2011] SC, 1K x64, CSP 77.1±0.7

[Chatfield et al., 2011]
Fisher, 256x256,

Gamma
77.8±0.6

[Duchenne et al., 2011] GMK 80.3±1.2
[Bosch et al., 2007] M-SVM 81.3±0.8

[Kulkarni and Li, 2011] ASIFT 83.3
[Yang et al., 2012a] GS-MKL 84.3

Table 6.4: Results on Caltech101 (30 train-

ing images/class) reported in the literature.

Mid-column: coding type, signature length,

and pooling. MF are Macrofeatures [Boureau

et al., 2010b], CSP is Pooling in Configura-

tion Space [Boureau et al., 2011]. The last

four rows show the highest results (acronyms

are explained in the text).
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Figure 6.11: SA scores low given Max-pooling, MaxExp, AxMin, and Gamma. Note,

SA and LcSA perform similar for AxMin@n=3.

Soft Assignment and Leakage. Section 6.3.5 discussed Soft Assignment and the

problem of the inherent leakage in this method. The experimental findings are shown

in figure 6.11 (Caltech101, 15 training images/class, Spatial Pyramid Matching) and

present SA given a variety of pooling methods. SA scores only 69.0±0.6% accuracy

given Max-pooling. MaxExp, AxMin, and Gamma yield small improvements. However,

applying AxMin@n=3 to SA yields a 2.6% improvement over Max-pooling leading to

71.6±0.4% accuracy. For comparison, LcSA with AxMin@n= 3 scores 71.9±0.4%.

Note that Max-pooling scores poorly despite being a special case of @n pooling, e.g.

AxMin@n=1. We suspect that exploiting the descriptor interdependency (@n>1), as

outlined in section 6.3.5, is important in tackling the leakage.

(a) SC (b) LLC (c) LcSA
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Figure 6.12: Performance of mid-level coding methods for various pooling schemes

(Flower17, Spatial Coordinate Coding, linear kernels). Plots (a-c) show results for SC,

LLC, and LcSA. Note that the majority of pooling schemes outperform Max-pooling.
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Flower17. Plots 6.12 (a-c) show results for SC, LLC, and LcSA for various pooling

schemes (Spatial Coordinate Coding, linear kernels). Plot 6.12 (a) shows that SC

combined with either MaxExp or AxMin has a performance below the baseline Max-

pooling which yields 93.4±0.3%. However, SC with Gamma gives 93.9±1.6% accuracy.

SC with AxMin@n=5 scores 94.4±0.4%. LLC in plot 6.12 (b) also improves over its

baseline of 89.4±1.6% accuracy reaching 92.6±1.8% and 92.8±0.5% for Gamma and

AxMin@n=5, which is a 3.4% improvement. LcSA in plot 6.12 (c) scores 93.1±1.1%

and 93.3±0.5% accuracy for Gamma and AxMin@n=5. This is a 3.3% improvement

over the Max-pooling baseline of 90.0±0.2%. Table 6.5 summarises our results. See

appendix A.4 for a statistical significance test. The results from chapter 5 are 91.4%

accuracy. The other studies are [Nilsback and Zisserman, 2008b] with 88.3%, [Liu et al.,

2011] with 88.2%, and [Yan et al., 2010] with 86.7% accuracy.

LcSA LLC SC

Max 90.0±0.2 89.4±1.6 93.4±0.3

Gamma 93.1±1.1 92.5±1.1 93.9±1.6

AxMin@n 93.3±0.5 92.8±0.8 94.4±0.4

Table 6.5: The best results attained by us on Flower17 (Spatial Coordinate Coding

and linear kernels were used). Max, Gamma, and AxMin@n=5 pooling are evaluated.
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Figure 6.13: Performance of mid-level coding and pooling (ImageCLEF11, Spatial

Coordinate Coding). SC, LLC, and LcSA are paired with Max-pooling, Gamma,

AxMin@n=7, and ExaPro@n. We used (a-c) linear and (d-f) χ2
RBF kernels.
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ImageCLEF11. To conclude the coding and pooling experiments on a challenging

set, SC, LLC, and LcSA are paired with Max-pooling, Gamma, AxMin@n=7, and

ExaPro@n. MaxExp and AxMin are not reported as they perform similar to Gamma.

Spatial Coordinate Coding was used in these tests. Plots 6.13 (a-c) show results on

linear kernels. Max-pooling scores 34.2%, 33.3%, and 33.0% MAP given SC, LLC,

and LcSA. Figure 6.13 (a) shows AxMin@n=7 and ExaPro@n yield 35.1% and 35.2%

MAP for SC. This gives a 1% improvement over Max-pooling (the best result on linear

kernels). LLC and LcSA yield 33.9% and 33.8% MAP for ExaPro@n and Gamma.

Plots 6.13 (d-f) show results on χ2
RBF kernels that improve performance further. Plots

6.13 (b) show that Max-pooling yields 36.1%, 34.9%, and 35.0% MAP given SC, LLC,

and LcSA. Next, AxMin@n=7 scores 37.0% (the best result on χ2
RBF kernels). This

is 0.9% improvement over Max-pooling. Lastly, LLC and LcSA yield 35.5% and 35.4%

MAP given AxMin@n=7 and Gamma. The evaluated pooling schemes improved results

over the baseline on both kernel types. We note a trend that LcSA works well with

Gamma (also MaxExp and AxMin in previous sections). SC and LLC tend to benefit

more from AxMin@n and ExaPro@n. Also, LLC and LcSA yield very similar results.

ImageCLEF11 and Bias in Images. Given the complexity of ImageCLEF11, Spa-

tial Pyramid Matching (SPM) and Dominant Angle Pyramid Matching (DoPM) were

employed for the final experiments (Sparse Coding, AxMin@n=7, linear and χ2
RBF

kernels used). Table 6.6 shows results for SPM and DoPM. Given linear kernels, they

have a performance of 35.2% and 35.3% MAP. For χ2
RBF , they yield 36.7% and 36.8%

MAP. Furthermore, combining either SCC (scored 37.0%) or SPM with DoPM yields

38.4% MAP. Only Opponent SIFT on a dense grid is used. The best results in previous

studies for the visual configuration are 38.8% [Binder et al., 2011] (multiple interest

points, descriptors, and kernels combined) and 38.2% [Su and Jurie, 2011] (multiple

semantic contexts, SPM channels, semantic features, and kernels combined).

SCC SPM DoPM Comb.

linear 35.1 35.2 35.3 36.6

χ2
RBF 37.0 36.7 36.8 38.4

Table 6.6: Our best results on ImageCLEF11 (Sparse Coding and AxMin@n=7). First

column: kernel type. First row: bias type. Comb. denotes SPM and DoPM combined.
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Figure 6.14: Evaluation of SCC, SPM, and DoPM approaches on the PascalVOC07

set. The overall signature length K
∗

is indicated. Linear kernels and MaxExp@n=7

are used for this experiment.

PascalVOC07 and Bias in Images. Figure 6.14 compares the classification perfor-

mance of SCC, SPM, and DoPM approaches on the PascalVOC07 set given various

dictionary sizes. Linear kernels and MaxExp@n=7 are used for this experiment. The

dictionary size is varied from 4K to 40K atoms for SCC. The signature lengths are the

same as the dictionary sizes in this case. The highest result attained by SCC amounts
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Figure 6.15: Evaluation of SCC, SPM, and DoPM schemes on the PascalVOC07 set

given Max-pooling, MaxExp, AxMin, Gamma, and MaxExp@n=7. The dictionary

sizes are 40K, 32K, and 24K atoms for SCC, SPM, and DoPM.
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to 62.4% MAP. Moreover, we vary the dictionary size from 4K to 32K atoms for SPM.

This results in the signature lengths between 44K and 352K. The best result attained

by SPM amounts to 62.8% MAP. Lastly, the dictionary size is varied from 4K to 24K

atoms for DoPM. The corresponding signature lengths are between 124K and 744K.

This method scores 63.6% MAP.

Figure 6.15 demonstrates various pooling strategies given dictionary sizes of 40K, 32K,

and 24K atoms for SCC, SPM, and DoPM approaches, respectively. Firstly, we dis-

cuss SCC approach. MaxExp@n=7 scores 62.4% MAP followed closely by MaxExp

that yields 62.0% MAP. AxMin and Gamma attain the same score of 61.4% MAP fol-

lowed by Max-pooling that yields 59.0% MAP only. Next, we discuss SPM approach.

MaxExp@n=7 scores 62.8% MAP followed closely by MaxExp and AxMin that yield

62.4% and 62.2% MAP. Gamma and Max-pooling attain 61.2% and 61.1% MAP only.

Lastly, we discuss DoPM approach. MaxExp@n=7 scores 63.6% MAP followed by

MaxExp and AxMin that yield 63.0% and 62.8% MAP. Max-pooling attains 62.7%

MAP and outperforms Gamma that yields 62.5% MAP only.

To conclude, the SCC approach results in very competitive signature lengths. However,

the coding step is computationally prohibitive for large visual dictionaries. It takes

815 and 3.6 seconds to code 1000 descriptors on a single 2.3GHz AMD Opteron core

given 40K and 4K atoms, respectively. This may be partially addressed by the FHNNS

scheme proposed earlier. SPM achieves a marginally better performance with somewhat

smaller dictionaries at a price of larger image signatures. DoPM achieves the best

performance at a price of sizeable image signatures. Furthermore, we observe that the

@n scheme combined with MaxExp attains the highest scores amongst the investigated

pooling strategies. MaxExp and its approximation AxMin are also strong performers

followed by Gamma and Max-pooling. These results remain consistent.

Dictionary Size and Fast Hierarchical Nearest Neighbour Search.

To conclude these evaluations, there follows a brief investigation into: i) the impact of

the dictionary size on LcSA and SC, ii) Fast Hierarchical Nearest Neighbour Search

(FHNNS), outlined in section 6.2.7, paired with LcSA and SC.
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Figure 6.16: Performance of LcSA given Fast Hierarchical Nearest Neighbour Search

(section 6.2.7) and ordinary NN (Caltech101, 15 training images/class, Spatial Pyramid

Matching). (a) LcSA with FHNNS as a function of ` (cluster dilation). Also, LcSA

with NN as a function of K (dictionary size) for Max, Gamma, and AxMin@n. (b)

Corresponding quantisation errors ξ2. (c) The optimal value @n for AxMin@n as a

function of the dictionary size K.
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Figure 6.17: Performance of SC given FHNNS and ordinary NN (ImageCLEF11,

Spatial Coordinate Coding). We applied linear and χ2
RBF kernels to Max-pooling and

AxMin@n=7 based signatures. (a) SC with FHNNS as a function of ` (cluster dilation).

(b) SC with NN as a function of K (dictionary size).

Dictionary Size. Figure 6.16 (a) shows the performance on Caltech101 (15 training

images/class, Spatial Pyramid Matching, linear kernels used) for LcSA given Max-

pooling, Gamma, and AxMin@n. The dictionary size K was varied. Max-pooling and

Gamma perform similar for K∈〈128; 512〉. Gamma scores marginally better than Max-

pooling for larger K. AxMin@n appears a strong performer even for small K. Plot 6.16
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(c) shows how the best performing parameter @n of AxMin@n varies as a function of

K. Figure 6.17 (b) shows that ImageCLEF11 (SC, Spatial Coordinate Coding, χ2
RBF

kernels used) benefits from a larger dictionary.

FHNNS. Figure 6.16 (a) also presents the results for LcSA with FHNNS and AxMin@n=

3 using K ′ = 4096 atoms. Given `� K ′ (` impacts the cluster dilation), LcSA and

FHNNS had a higher performance than LcSA and Nearest Neighbour. The first ap-

proach searches through only ` anchors to code a descriptor. However, it still produces

K ′ long mid-level features. The latter method searches through K = ` anchors and

produces only K long features in a comparable coding time. Hence, its performance

drops for small values of K. Plot 6.16 (b) shows the corresponding quantisation er-

ror for LcSA with FHNNS is smaller when compared to LcSA with NN (assuming

K = ` � K ′). Lastly, figure 6.17 (a) presents the classification results for SC with

FHNNS on ImageCLEF11. Given `=4096 and K ′=16384, this method is as robust as

ordinary SC in figure 6.17 (b) and saves on computational cost (see table 6.1).

6.4.4 Discussion on the Coding and Pooling Approaches

Mid-level coding methods differ both in their classification performance (section 6.4.3)

and computational cost (table 6.1). SA, LcSA, LLC, and SC exhibited varied perfor-

mance depending on the pooling variant. Further, a strong relation is observed between

Gamma and MaxExp pooling, as discussed in section 6.3.3, and empirically validated in

figures 6.7 (a, b). Classification experiments also suggest these two methods are similar.

In practice, using a carefully selected pooling methods led to significant improvements

over the baseline Max-pooling approach. Specifically, LcSA and LLC benefited from

MaxExp, AxMin, Gamma, and the @n pooling schemes. SC and SA demonstrated

their best performance during the classification when paired with the @n scheme. This

may be attributed to the leakage suppression discussed in section 6.3.5. Furthermore,

carefully selected pooling parameters led to the best classification performance by ac-

counting for the descriptor interdependence, as outlined in sections 6.3.4 and 6.3.5.

AxMin@n, MaxExp@n, and ExaPro@n are examples of extending AxMin, MaxExp,

and ExaPro pooling with the @n scheme. Note that SC consistently outperformed
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LcSA and LLC, but at the price of higher computational cost. Regarding computa-

tional efficiency, FHNNS, from section 6.2.7, benefited the coding as shown in section

6.4.3. Combining LcSA and SC with FHNNS improved their computational speed

4× and 1.5× (table 6.1) with no observable decline in the classification results. Large

overlap between the k-means dictionary clusters was required to limit the quantisation

noise along the cluster boundaries. Lastly, the impact of Spatial Coordinate Coding,

Spatial Pyramid Matching, and Dominant Angle Pyramid Matching on the classifica-

tion quality was evaluated. Due to the compactness of mid-level features generated

with SCC, it thrived on the discriminative properties of the @n scheme, as explained

in section 6.3.5. Note that computing kernels from SCC based signatures, as proposed

in chapter 5, was 36× faster than using SPM signatures. Moreover, SCC yielded better

performance than SPM on ImageCLEF11. Combining SCC/SPM and DoPM gave the

best final performance.

Pipeline Variants. For rapid classification, LcSA or LLC with FHNNS, MaxExp or

Gamma pooling, Spatial Coordinate Coding, and a linear kernel is effective. For large

complex datasets, SC, AxMin@n or MaxExp@n, SPM, DoPM, and χ2
RBF kernels may

be used. For small datasets, SC, AxMin@n or MaxExp@n, SCC, and a linear kernel

are a good choice.

6.5 Conclusions

This chapter presented an extensive comparison of four widely used mid-level coding

schemes on three popular datasets. Various pooling strategies were evaluated to asses

their impact on classification. We demonstrated that the performance of SA, LcSA,

LLC, and SC schemes depends on the choice of pooling. Evaluated MaxExp, Gamma,

AxMin, and ExaPro improved the performance over the baseline Max-pooling scheme.

Furthermore, we proposed a simple extension termed @n which is applicable to these

pooling schemes. Its positive impact on performance with AxMin@n, MaxExp@n, and

ExaPro@n pooling is observed. SC outperformed SA, LcSA, and LLC on the evaluated

datasets leading to 81.3% accuracy on Caltech101, 94.4% accuracy on Flower17, 38.4%

MAP on ImageCLEF11 (visual configuration, Opponent SIFT used only), and 63.6%
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MAP on PascalVOC07. LLC and LcSA were close competitors. Possible extensions of

this work include combining the proposed pooling schemes with Fisher Vector Encoding.

An optimisation of the pooling parameters on the classifier level is also possible.



Chapter 7

Visual Categorisation Beyond

First-order Occurrence Pooling

on Mid-level Features.

In object recognition, the ubiquitously popular Bag-of-Words model assumes: i) ex-

traction of local descriptors from images, ii) embedding these descriptors by a coder

to a given visual vocabulary space which results in so-called mid-level features, iii)

extracting statistics from mid-level features with a pooling operator that aggregates

occurrences of visual words in images into signatures suitable for classification. As the

last step aggregates only occurrences of visual words represented by coefficients of each

mid-level feature vector, we refer to it as First-order Occurrence Pooling. However,

this chapter proposes to aggregate over co-occurrences of visual words in mid-level fea-

tures. This is termed as Second-order Occurrence Pooling. Moreover, we provide a

derivation of Second- and Higher-order Occurrence Pooling based on linearisation of

so-called Minor Polynomial Kernel and generalise it to work with a variety of pooling

operators: Average, Max-pooling, Analytical pooling, and a highly effective trade-off

between Max-pooling and Analytical pooling. We evaluate how First-, Second-, and

Third-order Occurrence Pooling performs given various coders and pooling operators.

For bi- and multi-modal coding with two or more coders, we propose an extension of

Second- and Higher-order Occurrence Pooling based on linearisation of Minor Polyno-

121
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mial Kernel. We demonstrate, by combining both the grey scale and colour mid-level

features, that such a linearisation outperforms naive fusing schemes. We illustrate that

the well-known Spatial Pyramid Matching in Bag-of-Words and other similar meth-

ods are special cases of this method. Lastly, we compare the proposed approaches to

other renowned methods (e.g. Fisher Vector Encoding) in the same testbed and attain

state-of-the-art results.

7.1 Introduction

Bag-of-Words proposed in [Sivic and Zisserman, 2003, Csurka et al., 2004] is a popu-

lar approach which transforms local image descriptors [Lowe, 1999, Mikolajczyk and

Schmid, 2005, van de Sande et al., 2008] into image representations that are used in

matching and classification. Its first implementations were associated with object re-

trieval and scene matching [Sivic and Zisserman, 2003], as well as visual categorisation

[Csurka et al., 2004]. The BoW approach has undergone tremendous changes over recent

years. To date, a number of its variants have been developed and reported to produce

state-of-the-art results: Kernel Codebook [van Gemert et al., 2008, 2010, Philbin et al.,

2008] a.k.a. Soft Assignment and Visual Word Uncertainty, Approximate Locality-

constrained Soft Assignment proposed in chapter 6 as well as in [Lingqiao et al., 2011],

Sparse Coding [Lee et al., 2007, Yang et al., 2009], Linear Coordinate Coding [Yu et al.,

2009], Approximate Locality-constrained Linear Coding [Wang et al., 2010], Laplacian

Sparse Coding [Gao et al., 2010], and Over-Complete Sparse Coding [Yang et al., 2010].

We refer to this group of BoW as the first group. Recently, Super Vector Coding [Zhou

et al., 2010], Vector of Locally Aggregated Descriptors [Jégou et al., 2010], Fisher Vector

Encoding (FK) proposed in [Perronnin and Dance, 2007, Perronnin et al., 2010], and

Vector of Locally Aggregated Tensors (VLAT) from [Negrel et al., 2012] have emerged

as challenging competitors compared to e.g. Sparse Coding [Yang et al., 2009]. For

distinction, we call them the second group. The main hallmarks of these approaches

are: i) their coding step encoding descriptors with respect to the cluster centres after

assigning them to these clusters, ii) second-order statistics (last two methods) extracted

from mid-level features in order to complement the first-order cues, iii) their pooling
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step benefiting from Power Normalisation (PN) used by [Boughorbel et al., 2005, Per-

ronnin et al., 2010, Jégou et al., 2009], also introduced as Gamma in chapter 6, which

improves intra-class similarity between the image signatures.

Various models of BoW have been evaluated in several publications [Yang et al., 2007,

Chatfield et al., 2011, Coates and Ng, 2011, Tosic and Frossard, 2011, Boureau et al.,

2010a,b]. A recent review of coding schemes [Chatfield et al., 2011] includes Hard

Assignment, Soft Assignment, Approximate Locality-constrained Linear Coding, Su-

per Vector Coding, and Fisher Vector Encoding, all evaluated in a common testbed.

Furthermore, an insight into the role played by pooling during the generation of im-

age signatures has been studied in [Boureau et al., 2010a,b]. These pooling strategies

demonstrated promising improvements in visual categorisation. A detailed comparison

of various coding and pooling methods is presented by us in chapter 6, including some

improvements in this area. However, none of these evaluations manage to bridge the

gap between the classification performance of both groups of BoW introduced above.

To date, the pooling step employed by the first group aggregates only occurrences

of visual words in the mid-level features (First-order Occurrence Pooling). In this

chapter, we propose to aggregate co-occurrences of visual words in mid-level features

to address the second hallmark identified above. Our method is somewhat inspired

by Vector of Locally Aggregated Tensors [Negrel et al., 2012] in terms of how we

build co-occurrence matrices. However, we distinguish the coding and pooling steps

in the proposed model to incorporate arbitrary coders and pooling operators. For

the coding step, we employ Sparse Coding (SC), Approximate Locality-constrained

Linear Coding (LLC), and Approximate Locality-constrained Soft Assignment (LcSA).

This also differs from a recently proposed Second-order Pooling applied in the problem

of semantic segmentation [Carreira et al., 2012]: i) we perform pooling on the mid-

level features to preserve the data manifold learned during the coding step whilst the

latter method acts on the raw descriptors, ii) we provide a derivation of Second- and

Higher-order Occurrence Pooling based on linearisation of so-called Minor Polynomial

Kernel, iii) a generalised pooling operator is used. Another take on building richer

statistics from the mid-level features are 2D histogram representations [Yu and Zhang,

2011]. Their work uses various coders and proposes a number of arbitrary statistics for



124 Chapter 7. Beyond First-order Occurrence Pooling

each of them to retain more information about the coded descriptors. Our approach,

however, focuses on capturing co-occurrences as dictated by the analytical solution to

a well-defined problem.

To address the third hallmark, we use a generalised pooling operator called @n that was

found as a robust performer in chapter 6. The @n can be seen as a trade-off between

Max-pooling used by [Yang et al., 2009] and a chosen Analytical pooling, e.g. Power

Normalisation used in [Perronnin et al., 2010], theoretical expectation of Max-pooling

proposed in [Boureau et al., 2010b], its approximation AxMin from chapter 6, or the

probability of at least one particular visual word being present in an image proposed in

[Lingqiao et al., 2011]. We opt for @n combined with at least one particular visual word

being present in an image and simply refer to it as the @n operator in this chapter.

Where stated, we use Power Normalisation (Gamma) and theoretical expectation of

Max-pooling (MaxExp) without the @n scheme, both in their generalised forms to

account for the descriptor interdependence, also introduced in chapter 6.

The analysis of First-, Second-, and Third-order Occurrence Pooling in the BoW model

constitutes the main contribution of this work. In more detail:

1. We propose to aggregate co-occurrences rather than occurrences of visual words

in mid-level features (Second-order Occurrence Pooling).

2. A derivation of Second- and Higher-order Occurrence Pooling based on lineari-

sation of so-called Minor Polynomial Kernel is provided. A generalisation to

Average, Max-pooling, and the @n pooling operators is proposed.

3. Simulations show that Second-order Occurrence Pooling is a simple strategy in-

creasing numbers of visual vocabulary elements, thus improving the expressive-

ness of a given dictionary.

4. Evaluation of First-, Second-, and Third-order Occurrence Pooling is provided

for SC, LLC, and LcSA coders. Furthermore, we resign from Spatial Pyramid

Matching [Lazebnik et al., 2006, Yang et al., 2009] in favour of Spatial Coordinate

Coding proposed in chapter 5, further evaluated in chapter 5, and employed

recently by Fisher Vector Encoding in [Sánchez et al., 2012].
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5. Moreover, Max-pooling, MaxExp, and the @n pooling operators are compared

given SC coder.

6. Second- and Higher-order Occurrence Pooling on bi- and multi-modal codes is

proposed based on linearisation of Minor Polynomial Kernel.

7. Evaluation on the grey scale and colour mid-level features is performed for this

linearisation and compared to the naive fusing schemes.

8. For further evaluation of the proposed fusion, a residual descriptor is developed

to take advantage of the quantisation error yielded by the SC, LLC, and LcSA

coders. It is used as a second coder which is complementary to a chosen parent

mid-level coder.

9. Spatial Pyramid Matching [Lazebnik et al., 2006] and Dominant Angle Pyramid

Matching from chapter 5 are demonstrated as special cases of this fusion.

10. Given various signature sizes, our results are compared in the common testbed

to Fisher Vector Encoding (FK) from [Perronnin et al., 2010, Sánchez et al.,

2012], Vector of Locally Aggregated Tensors (VLAT) from [Negrel et al., 2012],

First-order Occurrence based Spatial Coordinate Coding (SCC), Spatial Pyramid

Matching (SPM) [Lazebnik et al., 2006, Yang et al., 2009], and Dominant Angle

Pyramid Matching (DoPM). State-of-the-art results are demonstrated on Pascal

VOC07, Caltech101, Flower102, and ImageCLEF11 datasets.

Section 7.1.1 introduces the standard model of Bag-of-Words. The coders and pool-

ing operators used in this study are presented in sections 7.1.2 and 7.1.3. Uni-modal

BoW with Higher-order Occurrence Pooling is introduced in section 7.2 followed by its

derivation sections 7.2.1 and 7.2.2. The benefits of Second-order Occurrence Pooling are

illustrated in section 7.2.3. Next, Bi- and Multi-modal BoW with Second- and Higher-

order Occurrence Pooling are proposed in section 7.3 followed by their derivations in

section 7.3.3. Sections 7.3.1 and 7.3.2 outline the early and late fusion of cues for BoW

(used for comparisons on the grey and colour features). Section 7.3.4 presents SPM and

DoPM as special cases of our bi-modal fusion. A Residual Descriptor is proposed in
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Figure 7.1: Overview of Bag-of-Words. The local descriptors x are extracted from

an image and coded by f that operates on columns. Circles of various sizes illustrate

values of mid-level coefficients. Pooling g aggregates visual words from the mid-level

features φ along rows.

section 7.3.5 to further demonstrate robustness of the bi-modal fusion. Section 7.4 de-

tails the experiments. Uni-modal First-, Second-, and Third-order Occurrence Pooling

are compared to FK and VLAT in section 7.4.2. The coding and pooling are evaluated

in sections 7.4.3 and 7.4.5. Experiments on Bi-modal Second-order Occurrence Pooling

are in section 7.4.4. The final conclusions are drawn in section 7.5.

7.1.1 Bag-of-Words Model

Let us denote the descriptor vectors as xn ∈ RD such that n = 1, ..., N , where N is

the total descriptor cardinality for the entire image set I, and D is the descriptor

dimensionality. Given any image i ∈ I, N i denotes a set of its descriptor indices.

We drop the superscript for simplicity and use N . Therefore, {xn}n∈N denotes a set

of descriptors for an image i ∈ I. Next, we assume k = 1, ...,K visual appearance

prototypes mk∈RD a.k.a. visual vocabulary, words, centres, atoms, and anchors. We

form a dictionaryM={mk}Kk=1, whereM∈RD×K can also be seen as a matrix formed

by visual words as its columns. Figure 7.1 illustrates BoW. Following the notation of

chapter 6, the first group of BoW (indicated in the introduction) is a combination of

the mid-level coding and pooling steps, followed by the `2 norm normalisation:

φn = f(xn,M), ∀n ∈ N (7.1)

ĥk = g
(
{φkn}n∈N

)
(7.2)

h = ĥ/‖ĥ‖2 (7.3)
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Equation (7.1) represents a chosen mid-level feature mapping f : RD→RK , e.g. Sparse

Coding. It quantifies the image content in terms of the visual vocabulary forming dic-

tionaryM. Each descriptor xn is embedded into the visual vocabulary space resulting

in mid-level features φn∈RK .

Equation (7.2) represents the pooling operation, e.g. Average or Max-pooling. The

role of g is to aggregate occurrences of visual words in mid-level features, and therefore

in an image. Formally, function g : R|N |→R takes all mid-level feature coefficients φkn

for visual word mk given image i to produce a kth coefficient in vector ĥ∈RK . Note

that φn denotes an nth mid-level feature vector while φkn denotes its kth coefficient.

Moreover, we do not assume pooling over cells of Spatial Pyramid Matching to maintain

simplicity. SPM compatible formulation can be found in chapter 6.

Equation (7.3) normalises signature ĥ to preserve only relative statistics of visual word

occurrences in an image, irrespective of the number of descriptors contained within it.

The resulting signatures hi,hj ∈RK for i, j ∈I form a linear kernel Kerij = (hi)
T ·hj

and a dual-form KDA classifier [Tahir et al., 2009] is employed.

This model of BoW assumes First-order Occurrence Pooling and often employs SC,

LLC, and LcSA coders. However, the same model can accommodate FK and VLAT.

7.1.2 Mid-level coders

Below is the introduction of the mid-level coders f used in this work. For clarity, we

abbreviate xn to x and φn to φ where possible.

Sparse Coding from [Lee et al., 2007, Yang et al., 2009] expresses each descriptor x

as a sparse linear combination of the visual words contained inM. This is achieved by

optimising the cost function indicated in equation (6.6), section 6.2.3, chapter 6.

Approximate Locality-constrained Linear Coding addresses the non-locality

phenomenon explained in [Wang et al., 2010] that can occur in SC. It optimises the

cost function from (6.8), section 6.2.4, chapter 6.

Approximate Locality-constrained Soft Assignment is derived from Mixture of

Gaussians given in equation (4.3) from section 4.2 of chapter 4. The membership
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probability of component k being selected given descriptor x is further used as a coder

φk=p(k|x). The coder itself is given in equation (6.9), section 6.2.5, chapter 6.

Fisher Vector Encoding is used in this chapter for comparison purposes. Nonethe-

less, the coding step can be isolated from its common formulation given in [Perronnin

and Dance, 2007, Perronnin et al., 2010]. FK assumes a dictionary based on Gaussian

Mixture Model with parameters θ= (θ1, ..., θK) = ((w1,m1,σ1), ..., (wK ,mK ,σK)). K

denotes the number of Gaussian components, wk are the component mixing probabili-

ties, mk are the means, σk matrices contain on-diagonal standard deviations. The first

and second order statistics ψ
(1)
k ,ψ

(2)
k ∈R

D are isolated:

ψ
(1)
k =

x−mk

σk
, ψ

(2)
k =

(x−mk)
2

σ2
k

− 1 (7.4)

Concatenation of per-cluster statistics ψk∈R2D forms the mid-level feature φ∈R2KD:

φ =
[
ψT1 , ...,ψ

T
K

]T
, ψk =

p (k|x, θ)
√
wk

 ψ
(1)
k

1√
2
ψ

(2)
k

 (7.5)

The expression p (k|x, θ) is the membership probability of component k being selected

given descriptor x and parameters θ. Note that the above formulation is compatible

with equation 7.1 except for φ to be 2KD rather than K long. Moreover, the resulting

φ for FK contains second-order statistics unlike φ that is generated by the SC, LLC,

and LcSA coders.

Vector of Locally Aggregated Tensors from [Negrel et al., 2012] also has a distinct

coding step yielding the first and second order statistics ψ
(1)
k ∈R

D and Ψ
(2)
k ∈R

D×D

per cluster:

Ψ
(2)
k = ψ

(1)
k ψ

(1)
k

T
−Ck, ψ

(1)
k = x−mk (7.6)

However, only the second order matrices Ψ
(2)
k are deployed to form the mid-level fea-

tures after normalisation with per-cluster covariance matrices Ck. As Ψ
(2)
k are sym-

metric, the upper triangles and diagonals are extracted and flattened into vectors with

operator u:, and concatenated for all k-means clusters k=1, ...,K:

φ =
[
u:(Ψ

(2)
1 )T , ..., u:(Ψ

(2)
K )T

]T
, (7.7)

Note that VLAT is also compatible with equation 7.1 except for φ to be KD(D+ 1)/2

rather than K long.
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7.1.3 Pooling Operators

BoW introduced in section 7.1.1 assumes aggregation of occurrences of visual words

represented by the coefficients of mid-level feature vectors with a pooling operator g

given by equation (7.2). It was demonstrated in chapter 6 that the choice of pooling

influences the classification performance of various coders. The operators used in this

work are briefly described below.

Average pooling counts the number of descriptor assignments per cluster k and

normalises such counts by the number of descriptors in the image [Csurka et al., 2004,

van Gemert et al., 2008, 2010]. However, it can also work with various coders, e.g. SC,

LLC, LcSA, FK, VLAT. It is expressed as:

ĥk = avg
(
{φkn}n∈N

)
=

1

|N |

∑
n∈N

φkn (7.8)

Max-pooling forms image signatures from the largest coefficients per visual word

[Yang et al., 2009, Boureau et al., 2010a,b, Lingqiao et al., 2011], thus the largest value

between |N | mid-level features responding to visual word mk is selected:

ĥk = max
(
{φkn}n∈N

)
= max (φkn(1) , φkn(2) , ...) (7.9)

Max-pooling is often combined with SC, LLC, or LcSA rather than FK or VLAT.

MaxExp operator is a likelihood inspired theoretical expectation of Max-pooling pro-

posed in [Boureau et al., 2010b], described in section 6.3.2, and expressed as:

ĥk = 1− (1− h∗k)
N̄ , h∗k = avg

(
{φkn}n∈N

)
(7.10)

Moreover, we generalised this operator to account for the feature interdependence in

section 6.3.4. As the degree of statistical dependence between features is unknown,

parameter N̄≤|N | has to be found by cross-validation. MaxExp is typically used with

SC, LLC, and LcSA because inequality 0≤ h∗k ≤ 1 has to hold. FK and VLAT may

violate this constraint.

Power Normalisation (Gamma) used in [Boughorbel et al., 2005, Perronnin et al.,

2010, Jégou et al., 2009] was shown to be closely related to MaxExp in section 6.17. It
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also follows a close probabilistic interpretation to MaxExp. A generalised form for FK

and VLAT that aggregates over positive-negative φkn is given as:

ĥk = sgn (h∗k) |h∗k|
γ , h∗k = avg

(
{φkn}n∈N

)
(7.11)

The correction factor 0<γ≤1 accounts for the degree of statistical dependence between

features and is found by cross-validation. Gamma also works with SC, LLC, and LcSA.

Improved pooling (@n) was proposed in section 6.3.5. It is designed to suppress the

low values of mid-level feature coefficients that were recognised as a noise and called

leakage. Given SC, LLC, and LcSA coders, leakage was shown to misrepresent chosen

visual prototypes. Moreover, the @n was shown to exploit the descriptor interdepen-

dence and led to consistent classification improvements. Such an operator is a trade-off

between Max-pooling and a chosen Analytical pooling, e.g. MaxExp:

h∗k = avg srt
(
{φkn}n∈N ,@n

)
=avg

[
srt
(
{φkn}n∈N ,@n

)]
ĥk = 1− (1− h∗k)

N̄ (7.12)

The @n largest mid-level features are selected by partial sort algorithm srt and averaged

by avg. Parameter 1≤@n≤|N | adjusts the trade-off, while meaning of N̄ remains the

same as for MaxExp. The mid-level feature coefficients for any given mk are presumed

to be drawn at random from a Bernoulli distribution under the i.i.d. assumption.

However, this is only approximately true as φkn are typically non-negative real numbers

such that 0≤φkn≤1. Note that the pool of the largest @n coefficients only is available.

Binomial distribution dictates that, given exactly N̄=@n trials, equation (7.12) yields

the probability of at least one visual word mk present in the @n largest mid-level

feature coefficients. Given that the largest coefficients represent visual word mk and

the smaller ones the noise, this formulation yields improved estimates. However, this

assumption does not directly apply to FK or VLAT.

An analytical trade-off between Average and Max-pooling similar to partially sorting

and averaging the mid-level features can be also obtained with the `p norm. This

combined with MaxExp results in an alternative operator (MaxExp+`p):

ĥk = 1− (1− h∗k)
N̄ , h∗k =

(
1

|N |
∑
n∈N
|φkn|p

)1/p

(7.13)

The solution between Average and Max-pooling is varied by 1≤p≤ ∞ instead of @n.
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Figure 7.2: Uni-modal Bag-of-Words with Second-order Occurrence Pooling (order

r = 2). The local descriptors x are extracted from an image and coded by f that

operates on columns. Circles of various sizes illustrate values of mid-level coefficients.

Self-tensor product ⊗r computes co-occurrences of visual words for every mid-level

feature φ. Pooling g aggregates visual words from the co-occurrence matrices ψ along

the direction of stacking. For the purpose of illustration, the flattening operator u:

from equation (7.15) is not used.

7.2 Uni-modal Bag-of-Words with Higher-Order Occur-

rence Pooling

Section 7.1.1 gave an overview of Bag-of-Words with First-order Occurrence Pooling,

typically using the reviewed coding and pooling operators. However, FK and VLAT

were demonstrated to benefit from the second-order statistics. To equip BoW in the

second- or higher-order statistics, we re-formulate it:

φn = f(xn,M), ∀n ∈ N (7.14)

ψn = u: (⊗rφn) (7.15)

ĥk = g
(
{ψkn}n∈N

)
(7.16)

h = ĥ/‖ĥ‖2 (7.17)

A relevant derivation will follow in section 7.2.1, but first we explain how the proposed

extension differs from BoW given in section 7.1.1. Figure 7.2 illustrates Bag-of-Words

with Second-order Occurrence Pooling in contrast to the typical BoW in figure 7.1.

Equation (7.14) represents a chosen mid-level feature mapping f : RD→RK , e.g. SC,

LLC, or LcSA.



132 Chapter 7. Beyond First-order Occurrence Pooling

Equation (7.15) represents tensor self-product ⊗r performed on every mid-level feature

vector φn resulting from f , where r ≥ 1 is a chosen rank (or order). This is done

in order to compute co-occurrences (or higher-order occurrences) of visual words in

every mid-level feature. Given r = 1, the above formulation becomes reduced to the

standard BoW as ψn=φn=⊗1 (φn). Moreover, as the resulting ⊗r>1 are symmetric,

only non-redundant coefficients are retained and flattened into vectors with operator

u:. Specifically, one can extract: i) the upper triangle and diagonal for ⊗2, ii) the upper

pyramid and diagonal plane for ⊗3, iii) the upper simplex and diagonal hyperplane for

⊗r≥3. The dimensionality of self-tensor product after rejecting repeated coefficients

and flattening is K(r) =
(
K+r−1

r

)
.

Equation (7.16) represents the pooling operation, as in sections 7.1.1 and 7.1.3. How-

ever, this time g aggregates co-occurrences or higher-order occurrences of visual words

in mid-level features for r= 2 or r > 2, respectively. Formally, function g : R|N |→R

takes kth co-occurrence (or higher-order occurrence) coefficients ψkn for all n∈N given

image i to produce a kth coefficient in vector ĥ∈RK(r)
, where k=1, ...,K(r).

Equation (7.17) is the normalisation step performed on ĥ to preserve only the relative

statistics of visual word co-occurrences (or higher-order occurrences). Note that the

resulting signatures h are of dimensionality K(r) which depends on the dictionary size

K and rank r, and remains independent of the descriptor dimensionality D. This is in

contrast to sizes of FK and VLAT signatures depending on both K and D.

7.2.1 Linearisation of Minor Polynomial Kernel

The proposed BoW with Higher-order Occurrence Pooling can be derived analytically

by performing the following steps: i) defining a kernel function on a pair of mid-level

features and referred to as Minor Kernel, ii) summing over all pairs of mid-level features

formed from two images, iii) normalising with respect to the feature count and, iv)

normalising the resulting kernel. First, we define Minor Polynomial Kernel:

ker
(
φ, φ̄

)
=
(
βφT φ̄+ λ

)r
(7.18)

We chose β=1 and λ=0, while r≥1 denotes the polynomial degree (it is also the order

of occurrence pooling). Equation (7.18) can be rewritten by using the dot product
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〈
φ, φ̄

〉
of a pair of mid-level features:

ker
(
φ, φ̄

)
=
〈
φ, φ̄

〉r
(7.19)

We assume φ and φ̄ are the `2 norm normalised. We define a kernel function between

two sets of mid-level features Φ = {φn}n∈N and Φ̄ =
{
φ̄n̄
}
n̄∈N̄ given two sets of

descriptor indexes N and N̄ from two images:

Ker
(
Φ, Φ̄

)
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

ker
(
φn, φ̄n̄

)
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

〈
φn, φ̄n̄

〉r
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

(
K∑
k=1

φknφ̄kn̄

)r
(7.20)

Moreover, the rightmost summation in equation (7.20) can be re-expressed as a dot

product of two self-tensor products of order r. Similar considerations were previously

shown in [Picard and Gosselin, 2011]. Thus, this leads to:(
K∑
k=1

φknφ̄kn̄

)r
=

K∑
k(1)=1

...
K∑

k(r)=1

φk(1) φ̄k(1) · ... · φk(r) φ̄k(r)

=
〈
u∗: (⊗rφn), u∗:

(
⊗rφ̄n̄

)〉
(7.21)

Operator u∗: is used to flatten an r dimensional tensor into a vector. Now, equation

(7.20) is further simplified:

Ker
(
Φ, Φ̄

)
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

〈
u∗: (⊗rφn), u∗:

(
⊗rφ̄n̄

)〉
=

〈
1

|N |

∑
n∈N

u∗: (⊗rφn),
1

|N̄ |
∑
n̄∈N̄

u∗:
(
⊗rφ̄n̄

)〉

=

〈
avg
n∈N

[
u∗: (⊗rφn)

]
, avg
n̄∈N̄

[
u∗:
(
⊗rφ̄n̄

)]〉
(7.22)

We denote avgn∈N vn as a mean vector over {vn}n∈N . Moreover, kernel Ker
(
Φ, Φ̄

)
is

normalised to ensure that self-similarity Ker (Φ,Φ)=Ker
(
Φ̄, Φ̄

)
=1. This is achieved

by applying a well-known formula:

Ker
(
Φ, Φ̄

)
:=

Ker
(
Φ, Φ̄

)√
Ker (Φ,Φ)

√
Ker

(
Φ̄, Φ̄

) (7.23)
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Therefore, the model in equations (7.20) and (7.22) can be readily re-expressed in

terms of generalised equations (7.14), (7.15) and (7.16) from section 7.2 if g in equation

(7.16) is defined as Average pooling from equation (7.8). We also replace the flattening

operator u∗: with previously defined u: to reject the redundant coefficients from the

symmetric self-tensor products.

7.2.2 Beyond Average Pooling for Higher-order Occurrence Statistics

It has been demonstrated in several evaluations on the visual categorisation tasks that

Average pooling performs worse than Max-pooling [Yang et al., 2009, Boureau et al.,

2010b]. This can be explained by stressing that Average pooling counts occurrences

of any given visual prototype in an image. Therefore, it quantifies areas spanned by

repeatable patterns that are unlikely to appear in the same quantities in a collection of

images. However, Max-pooling was shown to be a lower bound of the likelihood of at

least one visual word mk being present in image i [Lingqiao et al., 2011]. Thus, Max-

pooling acts largely as a detector of visual prototypes and delivers better classification

results. Below we provide a generalisation of Higher-order Occurrence Pooling to work

with Max-pooling and the @n operator to benefit the classification process.

First, we assume two sets of mid-level features Φ = {φn}n∈N and Φ̄ =
{
φ̄n̄
}
n̄∈N̄ and

their descriptor indexes N and N̄ from two images. We also define maxn∈N vn =

max ({vn}n∈N ) and maxn∈N vn as a vector formed from element-wise max ({v1n}n∈N ),

max ({v2n}n∈N ), ..., applied over all vn.

The standard BoW with Max-pooling and Polynomial Kernel of degree r is given in

equation (7.24) which is then expanded in equation (7.25) and simplified to a dot

product between two vectors in equation (7.26). Such an expression forms a linear

kernel. A simple lower bound of equation (7.25) is proposed in equation (7.27). Note

that it represents Higher-order Occurrence Pooling with Max-pooling operator further
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linearised to a dot product between two vectors in equation (7.28).

Ker
(
Φ, Φ̄

)
=
〈
ĥ, ¯̂h

〉r
, and


ĥk = max

(
{φkn}n∈N

)
¯̂
hk = max

({
φ̄kn
}
n̄∈N̄

)
=

(
K∑
k=1

max
n∈N

(φkn) ·max
n̄∈N̄

(
φ̄kn̄
))r

(7.24)

=
K∑

k(1)=1

...
K∑

k(r)=1

(
max
n∈N

(φk(1)n) · ... ·max
n∈N

(φk(r)n)· (7.25)

·max
n̄∈N̄

(
φ̄k(1)n̄

)
· ... ·max

n̄∈N̄

(
φ̄k(r)n̄

))

=

〈
u∗:
[
⊗r max

n∈N
(φn)

]
, u∗:
[
⊗r max

n̄∈N̄

(
φ̄n̄
) ]〉

(7.26)

≥
K∑

k(1)=1

...
K∑

k(r)=1

(
max
n∈N

(φk(1)n · ... · φk(r)n)· (7.27)

·max
n̄∈N̄

(
φk(1)n̄ · ... · φ̄k(r)n̄

))

=

〈
max
n∈N

[
u∗: (⊗rφn)

]
,max
n̄∈N̄

[
u∗:
(
⊗rφ̄n̄

)]〉
(7.28)

This lower bound emerges from breaking bi-linearity of Average pooling pooling by

applying Max-pooling. The formulation from section 7.2.1 helps predict the structure

of the linearised equations, but its performance remains identical to the parent method.

Breaking bi-linearity in Negrel et al. [2012] led to large improvements over its bi-linearity

preserving equivalent in Picard and Gosselin [2011]. We argue that breaking bi-linearity

in the pooling step is essential for improving results of the higher-order methods. We

observed that the lower bound formulations result in signatures having lower normalised

entropy compared to the parent methods. Thus, they preserve more refined information

about each image. We also verified this analytically for K=2 and r=2.

Next, an interesting probabilistic difference between models in equations (7.26) and

(7.28) can be shown. Let us consider Max-pooling in the standard BoW model (without

Polynomial Kernel). If mid-level feature coefficients φkn are drawn from a feature

distribution under the i.i.d. assumption given a visual word mk, the likelihood of

at least one visual word mk being present in image i [Lingqiao et al., 2011] can be

expressed as follows:

1−
∏
n∈N

(1− φkn) ≥ max
(
{φkn}n∈N

)
(7.29)
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Note that such a probability is an upper bound of Max-pooling. Furthermore, one

can derive upper bounds of Max-pooling for the problems in equations (7.26) and

(7.28). We denote the not-flattened image signature from equation (7.26) as tensor

T =⊗rmax
n∈N

(φn)∈RKr
. Coefficient-wise, this can be expressed as:

Tk(1),...,k(r) =
r∏
s=1

max
(
{φk(s)n}n∈N

)
(7.30)

Note that every coefficient of image signature of Bag-of-Words with Max-pooling and

Polynomial Kernel is upper bounded by the probability of visual words mk(1) , ...,mk(r)

jointly occurring at least once in image i:

r∏
s=1

(
1−
∏
n∈N

(1−φk(s)n)
)
≥ Tk(1),...,k(r) (7.31)

Moreover, we denote the not-flattened image signature from equation (7.28) as tensor

T
′
=max
n∈N

(
⊗rφn

)
∈RKr

. Coefficient-wise, this can be expressed as:

T
′

k(1),...,k(r)
= max

({ r∏
s=1

φk(s)n

}
n∈N

)
(7.32)

Again, we note that every coefficient of image signature of Higher-order Occurrence

Pooling with Max-pooling operator is upper bounded by the probability of visual words

mk(1) , ...,mk(r) jointly occurring in at least one mid-level feature φn:

1−
∏
n∈N

(
1−

r∏
s=1

φk(s)n

)
≥ T ′

k(1),...,k(r)
(7.33)

The joint occurrence of visual words on the mid-level feature level expressed in equation

(7.33) is more informative compared to the joint occurrence on the image level in

equation (7.31) as, it can be thought of as adding new elements to the visual dictionary.

This will be demonstrated in the next section.

In practice, we use Second- and Higher-order Occurrence Pooling with the @n operator.

Under minor changes, the standard BoW model with the @n operator and Polynomial

Kernel is shown to be an upper bound of such a model. See appendix A.3 for details.

Furthermore, applying normalisation from equation (7.23) is equivalent to the `2 norm

normalising the image signatures. Lastly, the operator u: defined earlier is used in place

of u∗: to reject the redundant coefficients from the symmetric self-tensor products.
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Figure 7.3: Uncertainty in Max-pooling. Mid-level feature coefficients φ1 and φ2 are

produced by LLC (l=2) for descriptors x∈〈1; 2〉 given visual words m1 =1 and m2 =2.

(a) First-order Occurrence Pooling results in the pooling uncertainty u (the grey area).

See text for explanations. (b) Second-order statistics produce co-occurrence component

(φ1φ2)0.5 that has a maximum for x indicated by the dashed stem. This component

limits the pooling uncertainty. The square root is applied to preserve the linear slopes,

e.g. (φ1φ1)0.5 =φ1.

7.2.3 Interpretation of the Joint Occurrence of Visual Words on the

Mid-level Feature Level

This section provides intuitive considerations on Second-order Occurrence Pooling. We

argue that the joint occurrence of visual words on the mid-level feature level benefits

Max-pooling (and related operators) by limiting its pooling uncertainty as detailed

below.

Figure 7.3 illustrates the mid-level coefficients produced with LLC (l=2) for descriptors

x∈〈1; 2〉. Two one dimensional visual words are used.

Figure 7.3 (a) shows two linear slopes comprised of coding values φ1 and φ2 for any

1≤x≤2. Imagine that we draw randomly a number of descriptors from this interval,

obtain φ1 and φ2 from the plot, and apply Max-pooling. Note that the role of pooling

is to aggregate the mid-level features into an image signature and preserve information

about the descriptors. If we were to draw several times xn = 1.5, we would obtain

φ1n = φ2n = 0.5 for all n. Applying Max-pooling would result in max({φ1n}n∈N ) =
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max({φ2n}n∈N ) = 0.5. From this information, one can infer that the only descriptors

that could produce such signature are xn = 0.5. Therefore, if max({φ1n}n∈N )→ 0.5

and max({φ2n}n∈N )→ 0.5, uncertainty in position of descriptors xn results in u→ 0.

However, it takes only two descriptors x1 = 1 and x2 = 2 to mask presence of other

descriptors x such that 1<x< 2. In this case, Max-pooling results in max({φ1n}n∈N )=

max({φ2n}n∈N ) = 1. One can infer that x1 = 1 and x2 = 2 were present amongst the

descriptors. However, other descriptors 1 < x < 2 could have been also present, e.g.

x3 =1.25, x4 =1.5, and x5 =1.75. However, there is nothing in the produced signature

indicating this. Thus, as max({φ1n}n∈N )→1 and max({φ2n}n∈N )→1, uncertainty in

position of descriptors xn results in u→ 1. Both these cases seem undesirable, e.g. if

all xn=1.5 then there are no other descriptors in the image. If x1 =1 and x2 =2 then

another descriptors are masked during Max-pooling.

Figure 7.3 (b) extends the above experiment with the second-order statistics. Co-

Figure 7.4: Co-occurrence coefficients. Mid-level feature coefficients φ1, ..., φ4 are

produced by SC (α= 1) for descriptors x= [x1, x2]T ∈ 〈−5; 5〉2 and arbitrarily chosen

k= 1, ..., 4 visual words mk ∈ 〈−5; 5〉2 indicated by the solid line stems. The second-

order statistics produce co-occurrence components (φ1φ2)0.5, (φ2φ3)0.5, (φ3φ4)0.5, and

(φ4φ1)0.5 with maxima for x indicated by the dashed stems. The remaining co-

occurrence coefficients are equal 0, e.g. (φ1φ3)0.5 = 0. This shows that the subspace

learned with SC is preserved.
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occurrence of φ1 and φ2 results in coefficient φ1φ2. We applied the square root to these

statistics to preserve the linear slopes of φ1 and φ2 in the plot, e.g. we plotted (φ1φ2)0.5

as a dashed curve instead of φ1φ2. We indicated that the maximum of this function is

attained for descriptor x= 1.5 (the dashed stem). If two descriptors x1 = 1 and x2 = 2

are drawn, this time they cannot fully mask other descriptors x such that 1<x< 2.

Max-pooling for these descriptors results in max({φ1n}n∈N )=max({φ2n}n∈N )=1 and

max({φ1nφ2n}n∈N ) = 0. Note that drawing a third descriptor x3 = 1.5 would result in

max({φ1nφ2n}n∈N )=0.5 bearing its mark in the image signature. Hence, we consider

the second-order statistics to be a simple approach that increases resolution of a visual

dictionary. This limits the uncertainty of Max-pooling such that u1 + u2≤u.

Figure 7.4 illustrates the mid-level coefficients φ1, φ2, φ3, φ4 produced with SC (α=1)

for x= [x1, x2]T ∈〈−5; 5〉2, and the corresponding co-occurrence coefficients (φ1φ2)0.5,

(φ2φ3)0.5, (φ3φ4)0.5, (φ4φ1)0.5. We applied the square root to these statistics to preserve

the linear slopes of φ1, φ2, φ3, and φ4. The maxima of the co-occurrence functions are

indicated by the dashed stems. They can be seen as the additional elements of the visual

dictionary. Note that (φ1φ3)0.5 =(φ2φ4)0.5 =0 for any x ∈〈−5; 5〉2. This demonstrates
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Figure 7.5: The saturation effect in Max-pooling for the first- and second-order pool-

ing (’first’ and ’sec’). Descriptor space 〈−5; 5〉D is quantised into 21D values. We draw

from it N ′ values given the uniform distribution. (a) Likelihood that at least k′ percent

of K=4 anchors will overlap with N ′ descriptors given D=2. (b) Simulation for D=3

and D=4. Note that the second-order pooling exhibits less saturation in all cases.
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that the subspace learned with SC is preserved in the second-order statistics in contrast

to 2D histogram representations [Yu and Zhang, 2011] that compute sum between all

pairs of mid-level feature coefficients. We applied summing and noted it yielded worse

results compared to the co-occurrence statistics. We also tried to bypass the coding

step as Second-order Pooling in [Carreira et al., 2012]. This also yielded lower results

than the proposed co-occurrence statistics on mid-level features. These observations

indicate the importance of subspace/manifold learning with sparse coding techniques.

We illustrated earlier that if the descriptors overlap with the anchors from the dictio-

nary, the remaining descriptors are not represented in the final signature. Therefore,

we perform an experiment to quantify this behaviour. Figure 7.5 illustrates likelihood

that at least k′ percent of K=4 anchors will overlap with N ′ descriptors that are drawn

at random from descriptor space 〈−5; 5〉D quantised into 21D values. We consider an

anchor to overlap with a descriptor if their both quantised values are the same. Figure

7.5 (a) demonstrates that if N ′=300 descriptors are drawn given D=2, it is 5% likely

they will overlap with all 4 anchors. For N ′ = 100 descriptors this is unlikely. Fur-

thermore, the second-order statistics contribute additional 4 non-zero coefficients that

increase resolution of the visual dictionary (see figure 7.4). Therefore, it is more likely

that for the second-order cases, the descriptors will overlap with at least one anchor

more likely than for the first-order cases. However, it is less likely that the descriptors

will overlap with all anchors for the second-order cases compared to the first-order rep-

resentations. This demonstrates that the second-order statistics improve capabilities of

Max-pooling (and related pooling operators). Lastly, figure 7.5 (b) demonstrates the

same behaviour in higher dimensional spaces as, for D= 3 and D= 4, there are 5 and

6 non-zero second-order coefficients, respectively.

7.3 Bag-of-Words for Bi- and Multi-modal Codes with

Second- and Higher-Order Occurrence Pooling

Grey scale and colour cues are often combined due to their complementary nature that

benefits the object category recognition [van de Sande et al., 2008, Perronnin et al.,

2010, Nilsback and Zisserman, 2008b,a, Yuan and Yan, 2010, Bosch et al., 2007, Yang
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et al., 2012a, Yan et al., 2010] and visual concept detection [Nowak et al., 2011, Huiskes

and Lew, 2008, Tahir et al., 2010, Binder et al., 2011, Su and Jurie, 2011]. Some

approaches employ so-called early fusion of modalities that occurs on the descriptor

level, e.g. [van de Sande et al., 2008] and descriptors from chapter 3. Another methods

perform coding and pooling steps on various modalities first, followed by so-called late

fusion which involves combining multiple kernels [Nilsback and Zisserman, 2008b,a,

Yang et al., 2012a, Yan et al., 2010, Koniusz and Mikolajczyk, 2010, Tahir et al., 2010].

The Second- and Higher-order Occurrence Pooling are characterised by their ability

to capture the joint occurrence of visual words per mid-level feature as formulated in

equation (7.33) of section 7.2.2. This ability extends to bi- and multi-modal scenar-

ios. Each modality represented by mid-level features of some kind results in the joint

occurrence statistics. Furthermore, linearisation of Minor Polynomial Kernel predicts

existence of a cross-term which can be characterised as the joint occurrence of visual

words between various kinds of mid-level features, e.g. grey and colour features that

correspond to each other spatially-wise.

We first formulate the typical early and late fusion approaches that are used for com-

parisons in this chapter, followed by derivation of Bi-modal Second- and Higher-order

Occurrence Pooling based on linearisation of Minor Polynomial Kernel.

7.3.1 Early Fusion in Bag-of-Words

We showed in chapter 5 that the early fusion of modalities can be thought of as a

trade-off between the quantisation losses of linearly coded signals. With the means of

Sparse Coding, we showed that such a trade-off can be implemented by concatenating

modalities on the descriptor level without explicitly redesigning the coding method.

Such a fusion of descriptors with their spatial coordinates is called Spatial Coordinate

Coding, which was introduced in section 5.2. It improves the classification performance

and limits the size of image signatures due to bypassed Spatial Pyramid Matching

[Lazebnik et al., 2006]. A similar fusion on descriptor level was also used in recognition

with discriminatively trained Gaussian Mixtures [Hegerath et al., 2006] and by Joint

Sparse Coding [Yang et al., 2012b]. Below is an extension of our method to work with
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arbitrary Q modalities4:

φ = arg min
φ̄

Q∑
q=1

β(q)
∥∥∥x(q) −M(q)φ̄

∥∥∥2

2
+ α‖φ̄‖1

s. t. φ̄ ≥ 0

(7.34)

Sparse Coding from [Lee et al., 2007, Yang et al., 2009] is extended in equation (7.34)

by combining Q expressions for quantisation loss with the sparsity term. Weights

β(1), ..., β(Q) determine the impact of features x(1), ...,x(Q) and dictionariesM(1), ...,M(Q)

in this multi-modal trade-off. One can also impose β(1)+...+β(Q)=1. Equation (7.34)

is further rewritten to reduce this problem to ordinary SC:

φ = arg min
φ̄

Q∑
q=1

∥∥∥√β(q)x(q) −
√
β(q)M(q)φ̄

∥∥∥2

2
+ α‖φ̄‖1

s. t. φ̄ ≥ 0

(7.35)

Vector x and dictionary M for ordinary SC can be formed by concatenation across Q

modalities:

x =


√
β(1)x(1)

...√
β(Q)x(Q)

 , M =


√
β(1)M(1)

...√
β(Q)M(Q)

 (7.36)

Spatial Coordinate Coding described in section 5.2 is used in experiments instead

of Spatial Pyramid Matching unless stated otherwise. The descriptor vectors x are

augmented with their spatial positions xs = [cx/w, cy/h]T that are normalised by the

image width and height. Thus x :=[
√
βsxsT ,

√
1− βsxT ]T . The trade-off between the

visual appearance and spatial bias is balanced by βs (determined by cross-validation).

Opponent SIFT is comprised of two modalities. The orientations of gradients are

extracted from the luminance and chromaticity maps to form two vectors that are

normalised and concatenated into the final descriptor. We consider such a descriptor

to be based on the augmentation of x with spatial and colour terms xs and xc being

balanced by βs and βc. This results in x :=[
√
βsxsT ,

√
1− βs − βcxT ,

√
βcxcT ]T . This

fusion is used only for comparisons with the extension given in section 7.3.3.

4Note that symbol Q denoted the number of Pyramid Matching partitions in chapter 6. As Pyramid

matching is used sporadically in this chapter, we reuse Q in the context of Q modalities to code.
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7.3.2 Late Fusion in Bag-of-Words

Another extremely popular approach to fusing multiple modalities is performed on

the kernel level [Nilsback and Zisserman, 2008b,a, Yan et al., 2010, Tahir et al., 2010,

Binder et al., 2011]. Typically, multiple modalities are coded and pooled and various

kernels are formed to become linearly combined:

Kerij =

Q∑
q=1

β(q)Ker
(q)
ij (7.37)

Weights β(1), ..., β(Q) determine the impact of kernels Ker(1), ...,Ker(Q). One can fur-

ther impose that β(1)+...+β(Q)=1. There are various approaches to learning weights.

However, given a small number of modalities, these weights can be easily found by

cross-validation and result in performance on a par with MKL [Yan et al., 2010, Tahir

et al., 2010]. This fusion is used only for comparisons to the fusion in section 7.3.3.

7.3.3 Linearisation of Minor Polynomial Kernel for Bi- and Multi-

modal Codes

The proposed BoW with Higher-order Occurrence Pooling for bi- and multi-modal

codes can be derived in the following four steps: i) defining a kernel function referred

to as Minor Kernel on Q pairs of mid-level features, one pair
(
φ

(q)
n , φ̄

(q)
n̄

)
per modality

q=1, ..., Q, ii) summing over pairs of mid-level features formed from two images, iii)

normalising with respect to the feature count, iv) normalising the final kernel. First,

we define Minor Polynomial Kernel:

ker
({(

φ(q), φ̄
(q))}Q

q=1

)
=

 Q∑
q=1

β(q)φ(q)T φ̄
(q)

+λ

r

(7.38)

We chose λ= 0, while β(1), ..., β(Q) are weights determining the impact of modalities,

and r ≥ 1 denotes the polynomial degree (the order of occurrence pooling). One can

further impose β(1)+...+β(Q)=1. Equation (7.38) can be rewritten by using the dot

product
〈
φ(q), φ̄(q)

〉
of a pair of mid-level features:

ker
({(

φ(q), φ̄
(q))}Q

q=1

)
=

 Q∑
q=1

β(q)
〈
φ(q), φ̄

(q)
〉r

(7.39)
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We assume that φ(q) and φ̄
(q)

are both `2 norm normalised. Next, we also define a

kernel function between two sets of sets of mid-level features Φ=
{{
φ

(q)
n

}
n∈N

}Q
q=1 and

Φ̄=
{{
φ̄

(q)
n̄

}
n̄∈N̄

}Q
q=1 given descriptor indexes N and N̄ from two images and given Q

modalities:

Ker
(
Φ, Φ̄

)
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

ker
({(

φ(q), φ̄
(q))}Q

q=1

)

=
1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

 Q∑
q=1

β(q)
〈
φ(q), φ̄

(q)
〉r

=
1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

 Q∑
q=1

β(q)
K∑
k=1

φ
(q)
kn φ̄

(q)
kn̄

r

(7.40)

Bi-modal Second-order Occurrence Pooling is first derived by linearising the

above kernel by setting parameters Q= 2 (two coders) and r= 2 (second-order). We

denote β(1) =β and β(2) =1−β. Thus, Minor Polynomial Kernel from equation (7.39)

that appears on the right side of equation (7.40) can be rewritten as:

(
β

K∑
k=1

φ
(1)
kn φ̄

(1)
kn̄ + (1−β)

K∑
k=1

φ
(2)
kn φ̄

(2)
kn̄

)2

(7.41)

= β2

(
K∑
k=1

φ
(1)
kn φ̄

(1)
kn̄

)2

+ (1−β)2

(
K∑
k=1

φ
(2)
kn φ̄

(2)
kn̄

)2

+ 2β(1−β)

(
K∑
k=1

φ
(1)
kn φ̄

(1)
kn̄

)(
K∑
k=1

φ
(2)
kn φ̄

(2)
kn̄

)

= β2
〈
u∗:
(
φ(1)
n φ

(1)
n

T
)
, u∗:
(
φ̄

(1)
n̄ φ̄

(1)
n̄

T )〉
(7.42)

+ 2β(1−β)
〈
u∗:
(
φ(1)
n φ

(2)
n

T
)
, u∗:
(
φ̄

(1)
n̄ φ̄

(2)
n̄

T )〉
(7.43)

+ (1−β)2
〈
u∗:
(
φ(2)
n φ

(2)
n

T
)
, u∗:
(
φ̄

(2)
n̄ φ̄

(2)
n̄

T )〉
(7.44)

Minor Polynomial Kernel in equation (7.41) is linearised for order r=2 with three dot

product terms in equations (7.42), (7.43), and (7.44). Substituting Minor Polynomial
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Kernel in equation (7.40) by these terms yields:

Ker
(
Φ, Φ̄

)
= Kerij

=β2
〈

avg
n∈N

[
u∗:
(
φ(1)
n φ

(1)
n

T
)]
, avg
n̄∈N̄

[
u∗:
(
φ̄

(1)
n̄ φ̄

(1)
n̄

T )]〉
(7.45)

+2β(1−β)
〈

avg
n∈N

[
u∗:
(
φ(1)
n φ

(2)
n

T
)]
, avg
n̄∈N̄

[
u∗:
(
φ̄

(1)
n̄ φ̄

(2)
n̄

T )]〉
(7.46)

+(1−β)2
〈

avg
n∈N

[
u∗:
(
φ(2)
n φ

(2)
n

T
)]
, avg
n̄∈N̄

[
u∗:
(
φ̄

(2)
n̄ φ̄

(2)
n̄

T )]〉
(7.47)

Note that the final kernel for the two coders is comprised of three dot product terms.

Equations (7.45) and (7.47) represent simply Second-order Occurrence Pooling for

coders q=1 and q=2. They are identical with the uni-modal coding given by equation

(7.22) in section 7.2.1. However, equation (7.46) represents the cross-term that cap-

tures co-occurrences between visual words of mid-level features φ
(1)
kn and φ

(2)

k′n
from two

coders. The cross-term will be shown later to improve results.

In practice, we work with Second-order Occurrence Pooling and the @n operator, as in

section 7.2.2. The earlier defined operator u: is used in place of u∗: in equations (7.45)

and (7.47) to reject the redundant coefficients from the symmetric self-tensor products.

Lastly, the image signatures are the `2 norm normalised.

Bi-modal Higher-order Occurrence Pooling can be derived from expansion of

Minor Polynomial Kernel in equation (7.39) using Binomial theorem:

[
βa+

(
1−β

)
b
]r

=

r∑
s=0

(
r

s

)[
βa
]r−s[(

1− β
)
b
]s

(7.48)

Two coders Q= 2 and order r≥ 2 are assumed, and substitutions a=
〈
φ(1), φ̄

(1)〉
and

b=
〈
φ(2), φ̄

(2)〉
are made. The derivations follow the same reasoning as for Bi-modal

Second-order Occurrence Pooling. We skip them for clarity and define Bag-of-Words
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with Bi-modal Higher-order Occurrence Pooling:

φ
(1)
n = f (1)

(
x

(1)
n ,M(1)

)
φ

(2)
n = f (2)

(
x

(2)
n ,M(2)

) , ∀n ∈ N (7.49)

ψsn = u:

[(
⊗r−s φ(1)

n

)(
⊗s φ(2)

n

)]
, s = 0, ..., r (7.50)

ĥsk =

(
r

s

)1
2

(1−β)
s
2 β

r−s
2 g
(
{ψskn}n∈N

)
, k=1, ...,K(r,s) (7.51)

h = ĥ/‖ĥ‖2 , ĥ =
[
ĥ0T, ..., ĥr

T
]T

(7.52)

Figure 7.6 illustrates Bi-modal BoW with Second-order Occurrence Pooling.

Equation (7.49) represents the coding step for two coders f (1) : RD
(1)→ RK

(1)
and

f (2) : RD
(2)→RK(2)

that embed descriptors x
(1)
n ∈RD

(1)
and x

(2)
n ∈RD

(2)
representing two

modalities into the visual vocabulary spaces given by dictionaries M(1) ∈ RD(1)×K(1)

andM(2)∈RD(2)×K(2)
. This results in two groups of mid-level features φ

(1)
n ∈RK

(1)
and

φ
(2)
n ∈RK

(2)
given the descriptor indexes n ∈N of image i ∈ I. Moreover, the coders

Figure 7.6: Bi-modal Bag-of-Words with Second-order Occurrence Pooling. Two

types of local descriptors x(1) and x(2) are extracted from an image and coded by

coders f (1) and f (2). Self-tensor product ⊗2 computes co-occurrences of visual words

in every mid-level feature φ(1) and φ(2), respectively. Moreover, tensor product ⊗

captures co-occurrences of visual words between φ(1) and φ(2) (cross-term operation).

Pooling g aggregates co-occurring visual words. For clarity, the flattening operator u:

from equation (7.50) is dropped.
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used can be of different types, the descriptor dimensionality D(1) may differ from D(2),

and dictionary sizes K(1) and K(2) may differ.

Equation (7.50) represents the joint occurrence of visual words in φ
(1)
n or φ

(2)
n , or the

cross-modal joint occurrence of visual words per mid-level pair (φ
(1)
n ,φ

(2)
n ), depending

on k and s. It results from an expansion of Minor Polynomial Kernel in equation (7.39)

according to Binomial theorem. A similar expansion was performed in equations (7.41-

7.44) for r= 2. However, we moved weight β inside the dot product and conveniently

appended them to the pooling operator in equation (7.51). Thus, only vectors ψsn

that would appear inside the dot product expressions are given. Furthermore, equation

(7.50) uses the previously defined operator u: rather than u∗: to reject the redundant

coefficients from the symmetric self-tensor products. This operator is applied here

to symmetries that occur in self-tensors ⊗r−sφ(1)
n and ⊗sφ(2)

n if r−s ≥ 2 or s ≥ 2.

The dimensionality of ψsn after rejecting repeated coefficients and flattening is K(r,s) =

K(r−s)K(s) =
(
K+r−s−1

r−s
)(
K+s−1

s

)
.

Equation (7.51) is the pooling step that aggregates the joint occurrences or the cross-

modal joint occurrences of visual words. Function g : R|N | → R takes kth the joint

occurrence (or the cross-modal joint occurrence) coefficients ψskn for all n ∈ N given

image i to produce a kth coefficient in vector ĥ
s∈RK(r,s)

. The weighting factor in front

of g results from Binomial expansion. We mainly use the @n operator for this step.

Equation (7.52) concatenates various joint occurrence statistics and also performs the

`2 norm normalisation.

Bi-modal Second-order Occurrence Pooling in equations (7.45), (7.46), and (7.47)

can also be readily derived from Bi-modal Higher-order Occurrence Pooling. If r= 2,

then equation (7.50) results in three terms:

ψ0
n=u∗:

(
φ(1)
n φ

(1)
n

T
)
, ĥ0

k=β avg
({
ψ0
kn

}
n∈N

)
(7.53)

ψ1
n=u∗:

(
φ(1)
n φ

(2)
n

T
)
, ĥ1

k=
√

2β(1−β)avg
({
ψ1
kn

}
n∈N

)
(7.54)

ψ2
n=u∗:

(
φ(2)
n φ

(2)
n

T
)
, ĥ2

k=(1− β) avg
({
ψ2
kn

}
n∈N

)
(7.55)

Employing Average pooling for the pooling step in equation (7.51) is done by replacing

g with avg. Pooling over ψ0
n, ψ1

n, and ψ2
n given in equations (7.53), (7.54), and (7.55)
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results in ĥ
0
, ĥ

1
, and ĥ

2
per image. Forming three kernels

〈
ĥ

0
i , ĥ

0
j

〉
,
〈
ĥ

1
i , ĥ

1
j

〉
, and〈

ĥ
2
i , ĥ

2
j

〉
given images i and j and adding these kernels is equivalent to operations in

equations (7.45), (7.46), and (7.47).

Multi-modal Higher-order Occurrence Pooling can be readily derived by expand-

ing Minor Polynomial Kernel in equation (7.39) using Multinomial theorem. Further-

more, this type of fusing multiple modalities can be realised simply by concatenating

the mid-level features of index n from Q coders:

φn=

[√
β(1)φ(1)

n
T,

√
β(2)φ(2)

n
T, ...,

√
β(Q)φ(Q)

n
T

]T
(7.56)

Such formed super mid-level features φn can be used to form a tensor according to

equation 7.15. This formulation is compatible with the proposed above Bi- and Multi-

modal Second- and Higher-order Occurrence Pooling.

7.3.4 Special Cases of Bi-modal Second-order Occurrence Pooling:

Pyramid Matching Techniques

Spatial Pyramid Matching (SPM) from [Lazebnik et al., 2006, Yang et al., 2009] is

demonstrated now as special cases of Bi-modal Second-order Occurrence Pooling. We

employ two coders such that f is SC, LLC, LcSA, or other coding, and the second

coder produces a binary vector with assignments of descriptors to spatial partitions:

φ(1)
n =f (xn,M) (7.57)

φ(2)
n =

[
⊕Tt=1 ⊕

Zt−1
zx=0 ⊕

Zt−1
zy=0 1

(⌊
Ztcxn
w

⌋
=zx

)
1
(⌊
Ztc

y
n

h

⌋
=zy

)]T
Equation (7.57) uses the operator ⊕Tt=1 denoting concatenation over T levels of spatial

quantisation. Operators ⊕Zt−1
zx=0 and ⊕Zt−1

zy=0 concatenate binary values over vertical and

horizontal partitions zx=0, ..., Zt−1 and zy=0, ..., Zt−1, where vectors Z and Z define

the numbers of splits for each pyramid level t = 1, ..., T . Binary indicator 1(zl = zr)

returns 1 if zl = zr, 0 otherwise. Next, 0 ≤ cxn < w and 0 ≤ cyn < h are the spatial

coordinates of descriptor xn, w and h are the image width and height, and b.c is the

floor operator.
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SPM (e.g. variant from [Yang et al., 2009]) can be obtained by simply applying Bi-

modal Second-order Occurrence Pooling, extracting the cross-modal joint occurrence

of visual words that form ψ1
n, and suppressing the joint occurrence of visual words in

ψ0
n and ψ2

n:

ψ0
n=[ ],ψ1

n=u∗:
(
φ(1)
n φ

(2)
n

T
)
,ψ2

n=[ ] (7.58)

The parameters for SPM with 1×1, 3×1, 1×3, and 2×2 spatial splits are T=4, Z=[1 3 1 2]T

and Z=[1 1 3 2]T . SPM gathers second-order statistics by quantifying co-occurrences

between visual words in the mid-level features and spatial locations that are quantised

at several levels of quantisation. Thus, SPM enhances the visual vocabulary with

a spatial vocabulary: similar visual appearances can take various meanings based on

their spatial locations. A similar mechanism is explained in section 7.2.3. Moreover, we

stress that Bi-modal Second-order Occurrence Pooling actually results in three terms

ψ0
n, ψ1

n, and ψ2
n. Therefore, it is worthy to evaluate such an SPM model.

By analogy to SPM, DoPM proposed in section 5.3 can be obtained by re-defining

the coder in equation (7.58) to exploit orientations of dominant edges from the local

descriptors in place of spatial coordinates. BoW schemes like BossaNova from [Avila

et al., 2012] can be also derived by employing: i) the descriptor assignment to l-nearest

k-means clusters as the first coder, ii) the descriptor assignment to radial zones defined

over k-means clusters as the second coder.

7.3.5 Residual Descriptor

We now present the Residual Descriptor (RD) that is used along with a chosen coder

(e.g. SC, LLC, or LcSA) to address its quantisation loss. RD is not related to bi-modal

fusion, however, we illustrate an interesting property of Bi-modal Second-order Occur-

rence Pooling with its means. To achieve good performance, SC and LLC optimise a

trade-off between a quantisation loss (defined below) and an explicitly chosen regular-

isation penalty, e.g. sparsity as in equation (6.6) or locality as in equation (6.8). The

quality of quantisation in these mappings is measured in accordance with the theory of

Linear Coordinate Coding [Yu et al., 2009] already presented in section 4.3 of chapter

4. The linear approximation of descriptor x given visual dictionary M and coder f
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(a) SC, α=1 (b) LcSA, σ2=4, l=2

Figure 7.7: Illustration of Residual Descriptors. Flow of the descriptors from their

original positions x denoted by the grid points to the corresponding reconstructed posi-

tions x̂ pointed to by the arrows. (a) SC: optimal reconstruction within the triangular

region. (b) LcSA: case of limited reconstruction due to low l=2.

that produces mid-level feature φ is x̂=Mf(x) =Mφ. The quantisation loss a.k.a

quantisation error is defined as the residual sum of squares:

ξ2(x) = ‖x− x̂‖22 (7.59)

However, ξ2(x) quantifies only the magnitude of such an error. Therefore, we define a

Residual Descriptor vector that can capture also the phase:

ξ(x) = x− x̂ (7.60)

Residual Descriptors have been already illustrated in figure 6.3 from chapter 6. For

convenience, figure 7.7 zooms at SC and LcSA related plots. Having coded descrip-

tors x = [x1, x2]T ∈ 〈−3; 3〉2 with three atoms m1 = [0, 3]T , m2 ≈ [−2,−2]T , and

m3≈ [2,−2]T by SC and LcSA coders, the obtained codes φ are projected back to the

descriptor space: x̂=Mφ. The resulting quantisation artifacts are visualised as dis-

placements between each descriptor x and its approximation x̂. Plots (a, b) illustrate

the SC and LcSA cases with low and large quantisation errors, respectively.
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The displacements in figure 6.3 are shown with respect to descriptors x. However,

encoding the magnitude and orientation of the quantisation error given equation (7.60)

does not indicate which descriptors are the source of errors. Hence, we propose to

use Bi-modal Second-order Occurrence Pooling framework to combine both mid-level

features φ and vectors ξ:

φ
(1)
n = f (xn,M)

φ
(2)
n = xn −Mφ

(1)
n

(7.61)

In this formulation, the cross-term captures co-occurrences between visual words of

mid-level feature φ(1) of descriptor x and directions of the corresponding residual error

ξ. This associates the error with the descriptor and helps us correct for the coding

artifacts. We demonstrate later that the cross-term resulting from this formulation

is very informative. Lastly, a somewhat related approach to the residual error was

proposed in [Zhang et al., 2012]. The quantisation loss is computed with respect to one

atom at a time. The resulting code is appended to a corresponding mid-level feature.

7.4 Experimental Section

The proposed Second- and Higher-order Occurrence Pooling methods are evaluated on

the PascalVOC07 [Everingham et al., 2007], Caltech101 [Fei-fei et al., 2004], Flower102

[Nilsback and Zisserman, 2008a], and ImageCLEF11 [Nowak et al., 2011] datasets.

7.4.1 Experimental Arrangements and Datasets

The PascalVOC07 [Everingham et al., 2007] set consists of 20 classes of objects of

varied nature, e.g. human, cat, chair, train, bottle. This is a challenging collection of

images with objects that appear at variable scales and orientations, often in difficult

visual contexts and backgrounds, being frequently partially occluded. We use this

set for the whole spectrum of proposed experiments and use the training, validation,

and testing splits as provided. The Caltech101 [Fei-fei et al., 2004] set consists of 101

classes represented by objects which are aligned to the centres of images as well as

a separate background class. The evaluations are performed with 15 and 30 training
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Dataset
Splits Training+validation Test Total Dict. Descr. Dims.

no. samples samples images size type (grey+col.)

PascalVOC07 1x 2501+2510=5011 4952 9963 100-1600

{
Opp.
SIFT

{
128D+
144D

Caltech101 10x 12+3=15/24+6=30 rest 9144 300-800 SIFT 128D

Flower102
1x

1020+1020=2040 6149 8189 300-1600
}

Opp.
SIFT

{
128D+
144DImageCLEF11 6K+2K=8K (+8K flip) 10K 18K (+8K) 800

Descr. Radii Descr.
Coding

Spatial/other
Order

Kernel Classifier
interval (px) per img. schemes types used

PascalVOC07
4,6,8,10,
12,14,16

12,16,24,32,
40,48,56

19420

{
SC/LLC/
LcSA

{
none/SCC/
SPM*/DoPM*

1*,2,3
 linear

multilabel

Caltech101 4,6,8,10
16,24,32,40

5200
SC

SCC/SPM* 1*,2
multiclass

Flower102 6,9,12,15 14688 SCC/DoPM* 1*,2

ImageCLEF11
4,6,8,10,
12,14,16

12,16,24,32,
40,48,56

19642 SCC 2

{
linear/
χ2
RBF

multilabel

(*) used in comparisons only

Table 7.1: Summary of the datasets, descriptor parameters, and experimental details.

images per class. The Flower102 [Nilsback and Zisserman, 2008a] set of 102 flower

classes was used for further evaluations. A single split into the training and testing

sets is supplied for this corpus. ImageCLEF11 Photo Annotation [Nowak et al., 2011]

is a challenging collection of images represented by 99 concepts of a varied nature,

including complex topics, e.g. party life, funny, work, birthday. Unlike sets of objects,

this challenge aims at annotation labels that correspond to human-like understanding

of a scene. ImageCLEF11 is a subset of MIRFLICKR with vastly improved annotations

which enables better classification [Huiskes and Lew, 2008, Huiskes et al., 2010]. Only

the visual annotation was used for this dataset. To best use the available images

in ImageCLEF11, the training set was doubled by left-right flipping training images

[Chatfield et al., 2011]. Table 7.1 presents the experimental parameters for all datasets.

Dictionaries. Online Dictionary Learning was used to train dictionaries for Sparse

Coding [Mairal et al., 2010]. Dictionary learning proposed for Approximate Locality-

constrained Linear Coding [Wang et al., 2010] was used for this coder. Furthermore, we

adapted such a method to work with Approximate Locality-constrained Soft Assign-

ment as it outperformed LcSA with dictionaries formed by k-means. Size-wise, we used

between 4K to 40K for First-, 300 to 1600 for Second-, and 100 to 200 for Third-order

Occurrence Pooling. Fisher Vector Encoding [Perronnin and Dance, 2007, Perronnin

et al., 2010, Sánchez et al., 2012] and Vector of Locally Aggregated Tensors [Negrel
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et al., 2012] were used in comparisons, GMM and k-means dictionaries with 64 to 4096

and 64 to 512 atoms were employed, respectively.

Descriptors. Opponent SIFT was extracted on dense grids. The grey scale com-

ponents (128D) were used for uni-modal BoW. The colour components (144D) were

additionally used for bi-modal BoW. No PCA was applied except for FK and VLAT

(80D for the grey and 120D for the grey and opponent components).

Dataset bias. Spatial relations in images were exploited mainly by Spatial Coordinate

Coding described in section 5.2 and explained in the context of this work in 7.3.1. SPM

and DoPM were additionally used to: i) obtain comparative results on the standard

BoW (first-order), ii) evaluate the proposed special cases of SPM and DoPM given in

section 7.3.4. SPM used 3 levels of coarseness with 1×1, 1×13, 3×11, and 2×12 grids on

PascalVOC07, and 4 levels with 1×11, 2×12, 3×13, and 4×14 grids on Caltech101. DoPM

was used to exploit dominant edge bias given 5 levels of coarseness with 1, 3, 6, 9, and 12

grids on PascalVOC07, and 3 levels with 1, 2, and 3 grids on Flower102. Comparisons

on the standard BoW (first-order) employed either SCC, SPM, or DoPM. By default,

all experiments on DoPM used the descriptor coordinates appended at the descriptor

level (SCC). Applying SPM directly to Second-order Occurrence Pooling performed

worse than SCC, produced extremely large signatures, thus it is rarely reported on.

Similar findings were presented in [Sánchez et al., 2012] for FK combined with SCC

rather than SPM. Thus, we combined FK and VLAT with SCC.

Coding and Pooling. We used SC for the most of experiments except for addi-

tional demonstrations of Second-order Occurrence Pooling with LLC and LcSA. The

pooling operator @n was used throughout experiments, however, a brief comparison

on Max-pooling, MaxExp, and Power Normalisation is provided. FK and VLAT were

combined with PN only as other operators are not directly applicable here. In all cases,

we determined the coding and pooling parameters by cross-validation. Moreover, all

comparative results on the standard BoW (first-order) used SC with the @n operator.

Kernels. Linear kernels Kerij =(hi)
T ·hj were used, where hi,hj∈RK are image sig-

natures for i, j∈I. χ2 merged with RBF (χ2
RBF ) defined as Kerij =exp [−ρ2

∑
k(hki−

hkj)
2/(hki + hkj)] was used additionally on ImageCLEF11, 1/ρ is the RBF radius.
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Figure 7.8: Performance of Higher-order Occurrence Pooling compared to various

approaches on the PascalVOC07 set. Results were plotted as functions of the signature

length K
∗
. (a) First-, Second-, and Third-order Occurrence Pooling r = 1, 2, 3 with

Spatial Coordinate Coding. Asterisk (*) denotes the case of order r= 2 without any

spatial information. (b) The case of order r= 2 compared to SPM and DoPM (r= 1).

Furthermore, results on FK and VLAT were also plotted.

Classifiers. Multi-label KDA from [Tahir et al., 2009] was applied to PascalVOC07

and ImageCLEF11, as it was previously found to be a robust performer on these sets

[Tahir et al., 2009, 2010]. The MAP measure is used to report the performance on these

sets. Multi-class KDA from [Tahir et al., 2009] was applied to both Clatech101 and

Flower102 to process the image signatures. Mean Accuracy is the reported performance

measure.

7.4.2 Evaluating Uni-modal Bag-of-Words for First-, Second-, and

Third-order Occurrence Pooling

This section presents how BoW described in section 7.2 performed in a practical clas-

sification scenario given order r=1, 2, and 3, and the grey scale SIFT. Note that r=1

renders BoW from section 7.2 to be equivalent to the standard BoW in section 7.1.1.

Figure 7.8 (a) compares the classification performance of the proposed method for

various orders r on the PascalVOC07 set (SCC is used). Second-order Occurrence
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Pooling is shown to outperform the first- and third-order cases. It attains 65.4%,

66.2%, and 66.0% MAP for K = 600, 800, and 1000 dictionary atoms that result in

the signature lengths K
∗
=180300, 320400, and 500500, respectively. Next, First-order

Occurrence Pooling scores respectable 62.4% MAP for K =K
∗
= 40000 atoms (this is

also the signature length). However, the coding step is computationally prohibitive for

large visual dictionaries. It takes 815 and 1.5 seconds to code 1000 descriptors on a

single 2.3GHz AMD Opteron core given K = 40000 and K = 800 atoms, respectively.

Third-order Occurrence Pooling yields 65% MAP for K = 200 atoms resulting in the

signature length K
∗

= 1353400. Our experiments suggest that the second-order case

yields the highest results and provides an attractive trade-off between the tractability

of coding and the signature lengths. Finally, Second-order Occurrence Pooling without

any spatial information attains 64.8% MAP for K = 1000 atoms. This demonstrates

the benefit of SCC.

Figure 7.8 (b) compares Second-order Occurrence Pooling (r= 2, SCC is used) to the

standard BoW (r = 1) combined with SPM and DoPM, respectively. FK and VLAT

combined with SCC are also evaluated. BoW (r=1) with SPM attains 62.8% MAP for

K = 32000 atoms and results in the signature length K
∗
= 352000. BoW (r= 1) with

DoPM yields 63.6% MAP and outperforms SPM by 0.8% for K=24000 atoms and the

signature length K
∗
= 744000. This is comparable to VLAT that attains 63.7% MAP

for the signature length K
∗
=829440. Lastly, FK yields 64.3% MAP given the signature

length K
∗
=327680. Thus, Second-order Occurrence Pooling outperforms FK by 1.9%

MAP for the comparable signature length.

Not included in the plots, Second-order Pooling with SPM applied to raw SIFT as

proposed in [Carreira et al., 2012] yields 54.2% MAP only. In this approach, the coding

step is bypassed. The results suggest that applying the coding step to learn the data

manifold is vital to obtain good results.



156 Chapter 7. Beyond First-order Occurrence Pooling

K∗

ac
cu

ra
cy

 (
%

)

 

 

10K 100K
67
68
69
70
71
72
73
74
75
76
77

r=2
r=1
SPM
FV
VLAT

K∗

ac
cu

ra
cy

 (
%

)

 

 

10K 100K
74
75
76
77
78
79
80
81
82
83
84

r=2
r=1
SPM
FV
VLAT

(a) Caltech101 (15 samples) (b) 30 samples/class

Figure 7.9: Performance of Second-order Occurrence Pooling (r = 2) compared to

various approaches on the Caltech101 set. Results were plotted as functions of the

signature length K
∗
. Standard BoW of order r=1 with SCC (r=1), BoW with SPM

(SPM), FK, and VLAT were evaluated on (a) 15, and (b) 30 training images per class.

Figure 7.9 (a) provides evaluations on 15 training images per class. BoW (r=1) with

SCC yields 72±0.3% accuracy for K = K
∗

= 4000 atoms (this is also the signature

length). This offers very compact signatures and a good performance. BoW (r = 1)

with SPM yields 74.9±0.4% accuracy for K = 4000 atoms and the signature length

K
∗

= 120000. This represents a slight improvement over FK that yields 74.6±0.6%

accuracy given the signature length K
∗

= 163840. Lastly, Second-order Occurrence

Pooling yields 76.6±0.5% given K=500 atoms and the signature length K
∗
=125250.

This is a 2% improvement over FK given the comparable signature lengths. FK and

VLAT yield 75.7±0.5% and 74.2±0.6% accuracy at best.

Figure 7.9 (b) provides evaluations given 30 training images per class. The comparison

arrangements remain identical to those presented above. Second-order Occurrence

Pooling scores 83.6±0.4% accuracy given K = 600 atoms and the signature length

K
∗
=180300. This is a 2.8% improvement over FK that scores 80.8±0.5% accuracy for

the comparable signature length K
∗
=163840. BoW (r=1) with SPM yields 81.5±0.4%

accuracy for K=4000 atoms and the signature length K
∗
=120000. This also represents

a small gain of 0.7% over FK. BoW (r=1) with SCC yields 77.7±0.6% accuracy. FK

and VLAT yield 82.2±0.4% and 81.1±0.7% accuracy at best.
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Figure 7.10: Evaluation of Bi-modal Second-order Occurrence Pooling (Pas-

calVOC07). (a) Bars (none) show results for SC, LLC, and LcSA coders (r = 2, 600

atoms). Residual Descriptors from section 7.3.5 were fused by the late fusion (late) from

section 7.3.2 (note little improvement). A larger gain is shown for Bi-modal Second-

order Occurrence Pooling (bi-modal). (b) Special case SPM and DoPM proposed in

section 7.3.4 were fused by Bi-modal Second-order Occurrence Pooling (bi-modally).

SPM applied directly to the mid-level features (naively) is also evaluated for r=2.

7.4.3 Evaluations of SC, LLC, and LcSA given Uni-modal Second-

order Occurrence Pooling

The coding step is now evaluated and demonstrated to have a significant impact on

the performance of Second-order Occurrence Pooling. Extensive evaluations for the

standard BoW (r=1) are provided in chapter 6.

Figure 7.10 (a) demonstrates results on SC, LLC, and LcSA, all obtained on the Pas-

calVOC07 set for K = 600 dictionary atoms that resulted in the signature lengths

K
∗
= 180300. Bars (none) show that SC yields 65.4%, LLC 62.9%, and LcSA 58.3%

MAP. This is in agreement with the observation that the lower the quantisation loss

of a coder is, the better the classification results are. We evaluated ξ2 according to

equation (7.59) for a subset of descriptors, summed over the individual ξ2 for each

descriptor, and observed that ξ2
SC<ξ

2
LLC<ξ

2
LcSA. In the next section, we will demon-

strate that Residual Descriptor from section 7.3.5 can exploit these quantisation effects.
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Finally, we note that the gap in performance between SC and LcSA is 7.1% MAP. We

expect that the worse the quantisation properties of a coder are, the more distorted

the joint occurrences of visual words on the mid-level feature level become. The gap

between SC and LcSA is much smaller for the standard BoW (r = 1) with SPM, as

demonstrated earlier in section 6.4.3.

7.4.4 Evaluations of Bi-modal Bag-of-Words for Second-order Occur-

rence Pooling

This section presents the classification performance for BoW given order r=2 described

in section 7.3 and illustrated in figure 7.6. The modalities to fuse are: i) the grey scale

SIFT and Residual Descriptor proposed in section 7.3.5, ii) the grey scale SIFT and

special case SPM and DoPM, respectively, as proposed in section 7.3.4, iii) the grey

scale and colour components of SIFT.

We evaluate the following fusion schemes: a) Bi-modal Second-order Occurrence Pool-

ing (r = 2) outlined in section 7.3.3 and referred to as bi-modal in the plots, b) the

early fusion explained in section 7.3.1 and referred to as early in the plots, c) the late

fusion explained in section 7.3.2 and referred to as late. Also, we often compare the

classification performance on FK and VLAT, both employing the early fusion only.

Moreover, for the proposed bi-modal fusion, equation (7.51) predicts 3 terms ĥsk that

are weighted by ws=
(
r
s

)1
2(1−β)

s
2β

r−s
2 in equation (7.51), where s= 0, ..., 2. If w2�w0

or w0�w2, we reject all ĥ2
k or ĥ0

k (they become negligible) to shorten the signature.

Residual Descriptor is combined with SC, LLC, and LcSA by the bi-modal and late

fusions on the PascalVOC07 set given K=600 dictionary atoms. Figure 7.10 (a) shows

the baseline performance for Second-order Occurrence Pooling (grey). The late fusion

(late) of the Residual Descriptor resulted in loss for SC and a marginal improvement for

LLC and LcSA. This is expected as the residual codes are not associated in such a fusion

neither with the corresponding descriptors nor the mid-level features (refer section 7.3.5

for the details). However, capturing co-occurrences of Residual Descriptors with the

corresponding features (bi-modal) results in a significant gain of 0.8%, 1.6%, and 3.3%

MAP for SC, LLC, and LcSA, respectively. The greater the quantisation loss for the
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coder is, the greater the alleviating effect becomes. Note also that SC attains 66.2%

MAP with the overall signature length K
∗
=265356. The same result was obtained in

section 7.4.2 for the uni-modal second-order case given longer signature K
∗
=320400.

SPM and DoPM (the special case) proposed in section 7.3.4 were fused by Bi-modal

Second-order Occurrence Pooling on the PascalVOC07 set. Figure 7.10 (b) demon-

strates their performance (bi-modally) compared to SPM combined in an ordinary

manner with Second-order Occurrence Pooling (naively). Bi-modally fused SPM scores

65.8% MAP giving a 0.8% improvement over the naively fused SPM which yields only

65.0% MAP. It also produces the signatures of length K
∗

= 510500 (bi-modal case)

compared to much longer 714780 (naive case). However, the uni-modal second-order

case (r =2 ) from section 7.4.2 that employs SCC scores the highest. This suggests that

SPM enhances the standard BoW (r=1) by extending its visual vocabulary (refer sec-

tion 7.3.4 for the details). Once the visual vocabulary is extended by the co-occurrence

statistics, the benefit of SPM becomes less obvious.
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Figure 7.11: Evaluation of Bi-modal Second-order Occurrence Pooling (bi-modal).

The grey and opponent components of SIFT were fused in various ways given (a)

PascalVOC07 and (b) Flower102 sets. The overall signature length K
∗

is indicated.

Results for the early and late fusions from sections 7.3.1 and 7.3.2 are also provided for

order r=2. Moreover, the early fusion was applied to FK, VLAT, and DoPM (r=1).
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Fusing colour. The grey and opponent components of SIFT are fused now to obtain

a further improvement of the classification results on three popular datasets. Figure

7.11 (a) introduces results attained by us on the PascalVOC07. The bi-modal fusion

(bi-modal) scores 69.2% MAP for K = 800 dictionary atoms. Note that one grey and

one colour dictionary are used. This produces the signatures of length K
∗
=960400 as

we rejected all ĥ2
k as explained earlier. The late fusion scores 68.6% MAP at its best

for K
∗
= 640800. This amounts to a 0.6% decline. The early fusion scores respectable

67.3% MAP for for K = 1000 atoms that result in the signature length K
∗
= 500500.

Lastly, FK and VLAT yield 65.6% and 64.8% MAP, respectively.

Figure 7.11 (b) details results on the Flower102 set. The bi-modal fusion (bi-modal)

scores 90.2% MAP for K=800 dictionary atoms and the signature length K
∗
=960400.

The late fusion scores 89.3% MAP at its best for K
∗

= 640800. This amounts to a

0.9% decline over the bi-modal approach. The early fusion scores respectable 89.4%

MAP for for K=1000 atoms that result in the signature length K
∗
=500500. FK and
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VLAT yield 89.3% and 88.7% MAP. The standard BoW (r = 1) with DoPM yields

89.3% MAP for K = 4000 atoms that result in the signature length K
∗
= 24000. This

represents a good trade-off between the classification scores and the signature lengths.

Figure 7.12 presents performance of Uni- and Bi-modal Second-order Occurrence Pool-

ing on the ImageCLEF11 set. As ImageCLEF11 consists largely of abstract topics, e.g.

party life, we also compare the classification performance of linear and χ2
RBF kernels.

The uni-modal, late, and the bi-modal approaches (grey, late, and bi-modal bars) score

38.2%, 40.0%, and 40.5% MAP given the linear kernel. K=800 atoms were used that

produced the signature lengths K
∗
= 320400, 640800, and 960400, respectively. A fur-

ther improvement is observed for χ2
RBF kernel with scores of 40.1%, 40.8%, and 41.2%

MAP, respectively. This compares favourably to the late fusion of SCC and DoPM

(χ2
RBF (∗)) given BoW (r=1) in section 6.4.3.

7.4.5 Evaluating the Pooling Operators

We conclude our evaluations with the classification results of Uni-modal Second-order

Occurrence Pooling combined with a variety of pooling operators on the PascalVOC07

set. We use SC with K=600 dictionary atoms and SCC for spatial information.

Figure 7.13 shows that the best score of 65.4% MAP is obtained with the @n operator.

Max-pooling is the weakest operator scoring 61.4% MAP. This amounts to a 4% gap in

performance and is consistent with extensive comparisons of such operators provided

in chapter 6. Moreover, this demonstrates importance of a pooling operator to the

process of aggregation of the co-occurrences of visual words in the mid-level features.

7.5 Conclusions

This chapter proposes a theoretically derived framework that extends Bag-of-Words

with the second- or higher-order statistics computed on the mid-level features. We

term these approaches as Second- and Higher-order Occurrence Pooling. According to

our evaluations, Uni-modal Second-order Occurrence Pooling offers the best trade-off

between the tractability of coding, the length of signatures, and the classification quality



162 Chapter 7. Beyond First-order Occurrence Pooling

grey SIFT VOC07
Caltech101 Caltech101

CLEF11
(15 img.) (30 img.)

Uni-modal (r=2) 66.2 76.6± 0.5 83.6± 0.4 40.1

FV 64.3 75.7 ± 0.5 82.2 ± 0.4 -

VLAT 63.7 74.2 ± 0.4 81.1 ± 0.7 -

SCC (r=1) 62.4 72.0 ± 0.3 77.7 ± 0.7 -

SPM (r=1) 62.8 74.9 ± 0.4 81.5 ± 0.5 -

DoPM (r=1) 63.6 - - -

grey+colour VOC07 Flower102 CLEF11

Bi-modal (r=2) 69.2 90.2 41.2

Early (r=2) 67.3 89.4 -

Late (r=2) 68.6 89.3 40.8

FV 65.6 89.3 -

VLAT 64.8 88.7 -

DoPM (r=1) - 89.3 -

Table 7.2: Summary of the best results from this chapter. The signature lengths for

the results in this table vary. See figures 7.8-7.12 for a fair and exact comparison.

method VOC07 method Flower102

[Sánchez et al., 2012] 66.3 [Awais et al., 2011b] 80.3

[Gong et al., 2009] 64.0 [Awais et al., 2011a] 75.7

[Zhou et al., 2010] 64.0 [Yuan and Yan, 2010] 74.1

[Perronnin et al., 2010] 60.3 [Zhang et al., 2012] 76.9

method
Caltech101

method CLEF11
(30 img.)

[Duchenne et al., 2011] 80.3 ± 1.2 [Binder et al., 2011] 38.8

[Bosch et al., 2007] 81.3 ± 0.8 [Su and Jurie, 2011] 38.2

[Kulkarni and Li, 2011] 83.3 [Avila et al., 2012] 38.4

[Yang et al., 2012a] 84.3 Chapter 6 38.4

Table 7.3: Summary of the best results from other studies.

for the grey scale descriptors. Such an approach is demonstrated to outperform the

standard BoW with various Pyramid Matching schemes, Fisher Vector Encoding, and

closely related Vector of Locally Aggregated Tensors. Evaluations were performed in a

common testbed on the PascalVOC07, Caltech101, and ImageCLEF11 sets. Moreover,

care was taken to compare the prior work regarding the coding and pooling techniques

and determine their suitability for the proposed framework. Sparse Coding and the @n

pooling operator are found to be the best performers.
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To benefit from the multi-modal nature of visual concepts, a bi-modal extension is for-

mulated. We term such an approach as Bi-modal Second-order Occurrence Pooling. Its

extensions to the multi-modal and higher-order variants are suggested. The proposed

bi-modal approach predicts existence of cross-modal statistics. Their importance is

demonstrated with extended Pyramid Matching schemes and Residual Descriptor ex-

ploiting the quantisation effects in coding.

Such a bi-modal variant is also compared extensively to the outlined early and late

fusions performed between the grey and colour components of descriptors on the stan-

dard BoW, Second-order Occurrence Pooling, Fisher Vector Encoding, and Vector of

Locally Aggregated Tensors. For this purpose, the PascalVOC07, Flower102, and Im-

ageCLEF11 set are used. Given a common testbed, the proposed Bi-modal Second-

order Occurrence Pooling is shown to outperform other approaches. Table 7.2 lists the

best results from our study. See appendix A.4 for a statistical significance test. For

comparison, we provide a selection of the best results from other studies in table 7.3.

Possible extensions of this work include compression of the image signatures to limit

their length. FK from [Jégou et al., 2012] and VLAT from [Negrel et al., 2012] already

exploit such a compression.
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Chapter 8

Conclusions

In this thesis, we have studied various steps that constitute on the Bag-of-Words model.

This resulted in a number of image representations with an increased invariance to the

repeatable visual stimuli, also known as burstiness of features. As a result of these

investigations, the following new methods have been contributed:

• A segmentation-based interest point detector to extract salient keypoints from

informative regions of images.

• A segmentation-based semi-local image descriptor to encode semi-local image

structures and ignore uniform appearances.

• An optimisation scheme for the Soft Assignment coding step to minimise its

quantisation loss.

• An alternative approach to SPM that introduces the spatial information to the

classification process at the descriptor level, called Spatial Coordinate Coding.

• Two alternative Pyramid Matching schemes that exploit dominant edge and

colour bias in images, called Dominant Angle and Colour Pyramid Matching,

respectively.

• New mid-level feature pooling approaches that take into account the descriptor

interdependence and other phenomena, e.g. the leakage resulting from the coding

step in Bag-of-Words.

165
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• An aggregation step over co-occurrences of visual words in mid-level features

called Higher-order Occurrence Pooling. This can be seen as a simple approach

which increases the numbers of visual words in a given dictionary.

The following list is a summary of the contributions and conclusions from each chapter:

• In chapter 2, various unsupervised segmentations were evaluated with aim to

extract salient repeatable keypoints from them. The most convex and concave

points along segment boundaries were located with the proposed SUSAN algo-

rithm. They proved to be stable and repeatable under various photometric and

geometric variations. Moreover, they also resulted in better classification scores

compared to the dense sampling strategy. As impact of keypoints from large

segments was diminished, this suggested that aggregating multiple contributions

from uniform areas of images into the final representations must be detrimental

to visual categorisation. This was confirmed, as adding back the dense sampled

points from such areas decreased back the results. The proposed detector instead

delivered keypoints from areas where the biggest changes in appearance took

place, as dictated by the segmentation maps. Therefore, we concluded that the

local image descriptors extracted at these locations were more distinctive com-

pared to descriptors resulting from dense sampling. However, a minor drawback

of working with the unsupervised segmentation algorithms is that they fail to

enclose textured regions into large segments. Hence, they cannot be easily used

to diminish the impact of repeatable texture patterns.

• In chapter 3, segmentation-based semi-local image descriptors were designed and

studied. They resulted in compact, relatively low dimensional image representa-

tions, that are especially highly suitable for large scale experiments. Segmentation

maps were investigated for their ability of delivering the robust spatial hypotheses

of object parts. The local image descriptors like SIFT employ rigid spatial bins.

This means that SIFT tends to somewhat blend foregrounds and backgrounds,

and that spatial bins are never fully aligned to the complex shapes of objects.

Our approach resulted in semi-local image representations built from pairs of ad-

jacent segments. This captured only neighbouring object parts that are more
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likely to repeat than complex representations across images of the same category.

On the other hand, they may be less discriminative. Therefore, various image

statistics were extracted from image regions indicated by segments. Moreover, as

such segments cover entire images, all image regions were represented well unlike

in case of typical interest point detectors that occasionally contribute very few

keypoints. We also note that the large uniform areas in images, as dictated by

the segmentation maps, contributed fewer vectors compared to dense sampling.

Therefore, this diminished impact of uninformative appearances and resulted in

semi-local compact representations that outperformed SIFT.

• In chapter 4, an intuitive coding approach called Soft Assignment was investi-

gated in the context of Linear Coordinate Coding methods that are popular due

to their robustness in visual categorisation. The SA coder embeds the local im-

age descriptors into a given vocabulary space in order to represent images by the

compact vectors. This process is however impaired by the quantisation effects

that take place during the coding procedure. We presented a novel method for

finding the so-called smoothing factor of the SA model by minimising the quanti-

sation loss, typically employed by the LCC family. We observed that minimising

the quantisation loss for SA correlated strongly with peaks in the classification

scores. We conclude that the smoothing parameter selected in such a manner

helps linearise the SA model. Moreover, we note that a large quantisation loss in

the coding step has a detrimental impact on the classification process.

• In chapter 5, an alternative approach to Spatial Pyramid Matching was proposed.

A trade-off between visual appearance and spatial bias, called Spatial Coordinate

Coding, was implemented on the coding level. This was achieved by minimising

two terms for the quantisation loss in the SC coder. Similar considerations ap-

plied to SA and resulted in an observation that the SCC scheme can be simply

implemented at the descriptor level by concatenating descriptors with the corre-

sponding spatial spatial locations. Moreover, the proposed method outperformed

SPM and resulted in significantly smaller image representations. This enabled

investigations into Pyramid Matching applied to cues other than spatial informa-
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tion. Dominant edges in images were proposed as a good source of bias in images.

Therefore, the Dominant Angle cues implemented in SIFT were employed in or-

der to form DoPM. Quantising DA at multiple levels of coarseness resulted in

improved classification performance over simply using DA at the descriptor level.

Next, similar ideas were successfully applied to the colour. Based on experimen-

tal results, we conclude that the spatial bias is best exploited at the descriptor

level while dominant edges benefit more form Pyramid Matching. The proposed

SCC and DoPM were additionally used and compared in various classification

scenarios in the remaining chapters of this thesis.

• Chapter 6 introduced the major contributions that address the phenomenon of

repeatable visual patterns. Evaluations from chapters 2 and 3 strongly suggested

that reducing contributions from large uniform regions in images can increase the

classification performance. However, segmentations used for that purpose suf-

fered from inability to cope with textures and the structural noise. Therefore,

dense sampling was employed, and the pooling step that aggregates the mid-level

features into the image signatures was investigated. The aggregation step builds

statistics about occurrences of visual words in each image. Therefore, a family of

likelihood inspired operators were generalised by us to account for the descriptor

interdependency. This resulted in a robust estimator of probability of at least one

particular visual word being present in an image. Such a pooling step acted as

a reliable detector of visual prototypes. Moreover, instead of counting the visual

appearances of any given type, and therefore quantifying areas covered by them,

this operator just registered how likely it was for the prototype to be contained

by the image. This significantly improved the classification results. Moreover,

a pooling extension called the @n operator was proposed to further cope with a

coding noise called the leakage. Other contributions include a fast coding tech-

nique called Approximate Locality-constrained Soft Assignment, its optimisation

step that minimises its quantisation loss, and a speed-wise improvement of cod-

ing based on Spill Trees. Furthrmore, interaction between the coding and pooling

steps was demonstrated in numerous practical evaluations never undertaken by

others on such a scale. It revealed the best coding and pooling operators for visual
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categorisation, and demonstrated that SCC and DoPM also benefit from these

operators. The state-of-the-art results were attained. We conclude that both

coding and pooling steps have a major impact on visual categorisation. Also,

the pooling operator should account for the phenomena taking place in a coder.

To conclude, the pooling step has an immense ability to diminish the impact of

statistically unpredictable repetitions of visual patterns.

• Chapter 7 is the culmination of the investigations of the BoW models. Typically,

a pooling operator aggregates occurrences of visual words represented by coeffi-

cients of each mid-level feature vector associated with the descriptors. However,

approaches such as Fisher Vector Encoding have outperformed BoW based on

SC, LLC, and similar coders. This chapter analysed various discrepancies be-

tween typical BoW and FK. It was concluded that FK differs in its coding step,

employs the second-order statistics for the image representations, and exploits a

likelihood inspired pooling step. Therefore, the differences between both models

were addressed. The main contribution of this chapter lies in equipping the BoW

model with the second- or higher-order statistics. Specifically, we proposed the

aggregation step over co-occurrences of visual words in mid-level features called

Second-order Occurrence Pooling. Second- and Higher-order Occurrence Pooling

were analytically derived based on linearisation of so-called Minor Polynomial

Kernel. Generalisation to various pooling operators was explored: Max-pooling,

Analytical pooling, and a highly effective trade-off between Max-pooling and An-

alytical pooling called the @n operator from chapter 6. Such an equipped BoW

attained significant improvements over Fisher Vector Encoding. Having analysed

the nature of co-occurrences, we concluded that they simply increase the reso-

lution of a given visual vocabulary. Furthermore, as the classification process

often benefits from fusing multiple complementary modalities, e.g. the grey scale

and colour descriptors, we developed a bi- and multi-modal coding for two or

more coders. This represents an extension of Second- and Higher-order Occur-

rence Pooling. It is demonstrated extensively by combining both the grey scale

and colour mid-level features that such an approach outperforms naive fusing

schemes. Moreover, the SPM scheme for BoW and other similar methods are
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shown as special cases of this approach. The second-order statistics collected by

SPM explain why it has been such a remarkable performer. Lastly, a Residual

Descriptor that exploits the quantisation loss of the coding step was designed to

work with the bi-modal extension. It thrived on the quantisation loss of coders.

To conclude, various comparisons to the state-of-the-art systems show that the

proposed model outperformed them significantly on various datasets.

To conclude, Bag-of-Words is a robust and flexible model for visual categorisation.

Its various components can be adapted to specific tasks, e.g. Visual Object Category

Recognition or Visual Concept Detection. We have observed that bias in images such as

dominant orientations of edges, dominant colours, or spatial locations can be beneficial

in recognition. Therefore, descriptors which are only partially invariant to orientations

of edges produced very good results. However, it remains an open question, whether

representations designed to exploit bias in images can generalise sufficiently well be-

tween different datasets. Moreover, we have observed that the variance introduced by

the repeatable visual patterns can be suppressed at various stages of the BoW model.

The most effective strategy proposed in this thesis is pooling designed to cope with the

descriptor interdependence. Nonetheless, experiments with segmentation-based inter-

est points and semi-local descriptors have also shown a promise. More importantly, as

the variance from repeatable visual stimuli is limited, the classification results improve.

This suggest that the local image descriptors produce very distinct representations of

objects (or their parts), e.g. more complex ensembles of descriptors may be redundant.

Furthermore, we have observed that minimising the quantisation error during the cod-

ing step facilitates better results. This can be explained by preventing a loss of informa-

tion in the coding step. Moreover, we have demonstrated that the pooling step is prone

to a loss of information. Often, the best quantisation may result in the features that

are not distinct enough for the pooling step to produce meaningful image signatures.

Therefore, we have introduced the second-order statistics to represent the content from

the coding step robustly. This reduces uncertainty introduced by the pooling step.

Therefore, the obtained image signatures become more distinctive. We note that the

BoW model requires more studies due to complex interactions between its components.
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8.1 Further Directions

Bag-of-Words includes several components that often constitute separate directions of

research. Robust local image descriptors exploiting curvature of objects, as well as

accounting for various transformations, could improve the classification results. For

instance, we doubled the number of training images by left-right flipping operation.

This provided invariance to flipping at a cost of additional computations that could

be avoided. Moreover, as the proposed segmentation-based descriptors proved to be

particularly suited in large scale experiments due to their relatively low dimension-

ality, we expect that such a representation may be particularly beneficial given the

spatio-temporal data for the action and event recognition. Moreover, note that SIFT

descriptors apply by default a predefined threshold to strong gradients to decrease their

impact. This procedure resembles the proposed AxMin correction. Therefore, the no-

tion of at least one particular visual word being present in an image can be applied

to the descriptors to prevent burstiness of image gradient: a statistical uncertainty of

evidence of an edge.

The coding approaches are being constantly improved. According to our evaluations,

SC is the best performing coder. However, its speed is prohibitive given a large vi-

sual dictionary. Criteria optimised by SC could be relaxed and a fast approximation

devised. Another promising direction in coding is a supervised strategy for learning

the manifold structure. Current approaches are only approximately respecting the un-

derlying manifold by the globally imposed notion of locality. Moreover, invariance to

the scale, rotation, and affine transformations of visual appearances can be learnt from

the annotated data to link visual prototypes in a dictionary which currently may be

replicated many times because local image descriptors are not fully invariant to various

photometric and geometric transformations. Another direction of research on coding

and dictionary learning could address how to robustly generalise a learned model be-

tween various datasets. This could be achieved by: i) studying a manifold resulting

from a design of the descriptor representation, ii) studying difference in image bias be-

tween datasets, iii) employing transfer learning to small datasets to better approximate

a true distribution.
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The pooling step has been only recently emphasised as an important part of the BoW

model. Currently, a couple of parameters of pooling require cross-validation. An in-

teresting route would be to learn these parameters, perhaps even one per visual word,

by fusing pooling with the classifier. As different visual words exhibit different levels

of burstiness in collections of images, learning these parameters is a promising direc-

tion. An ensemble learning to select appropriate pooling method per visual word is

also possible. Furthermore, as some visual words are strongly correlated, e.g. the sky

and the sun, approaches to decorrelation of visual prototypes could further enhance

performance. Whitening PCA applied to the image signatures can reduce redundancy.

More importantly, the variance introduced by the repeatable visual patterns can be sup-

pressed at various stages in the BoW model. Wider studies are required to understand

how to best decrease it while reducing classification complexity and maximising the

classification performance. Another line of investigations concerns fast semi-supervised

interest point detectors and segmentations that can learn characteristics of the most

discriminative and repeatable regions for visual categorisation.

Applying the second- or higher-order statistics has been demonstrated as a way of

extending the visual dictionary. Alternative approaches to partitioning the descrip-

tor space are of great interest, for instance combining FK with radial zones defined

over Gaussian components. Moreover, as the second- and higher-order statistics have

emerged to perform multi-modal fusion by schemes such as SPM, another great possi-

bility is to investigate how these statistics can enrich classification in spatio-temporal

and audio-visual domains, possibly further enhanced by the textual representations.

In the long term, attribute learning based on the proposed BoW model could result in

a greater sensitivity to various objects and provide improved representations for com-

plex visual concepts. For instance, projections on the second-order image signatures

produced from the linked visual dictionary could be learnt to reflect various attributes.

Then a scoring function based on such a representation can be designed to more ac-

curately describe the content of images from various sources. Therefore, it can be

employed to perform an accurate transfer learning by mining the internet resources.
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A.1 Analytical Similarity of LcSA and LLC

Now, the analytical similarity between LcSA and LLC will be shown. The solution to

Approximate Locality-constrained Linear Coding from equation (6.8), but without the

non-negativity constraint, is given in [Wang et al., 2010]. It can be expressed as:

C =
(
M′ − 1Tx

)T
·
(
M′ − 1Tx

)
φ̄ = (C + λ·I)−1 ·1

φ = φ̄/1T φ̄

(A.1)

Symbol I denotes the identity matrix, λ is a small regularisation constraint, e.g. λ=

10−5, 1 is a vector with all coefficients equal 1, and symbol x is a descriptor to code.

Moreover, C is a covariance matrix,M′
is a matrix storing a localised visual vocabulary

such that anchors m1, ...,ml from dictionary M form its columns. These anchors are

the l-nearest anchors of descriptor x found with the NN search. Finally, φ is a resulting

mid-level code.

By assuming that matrix C has all off-diagonal elements equal 0, we turn inversion of

(C + λ·I) into a simple element-wise division:

(C + λ·I)−1 =


1

(m1 − x)2 + λ
0 0

0 ... 0

0 0
1

(ml − x)2 + λ

 (A.2)

We note that
(
ml′−x

)2
=
(
ml′−x

)T ·(ml′−x
)
. Furthermore, φ̄ becomes simplified to

the following expression:

φ̄ =

[
1

(m1 − x)2 + λ
, ...,

1

(ml − x)2 + λ

]T
(A.3)
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Moreover, applying the final step such as φ= φ̄/1T φ̄ results in expression:

φl′ =

1(
ml′ − x

)2
+ λ∑

m′∈M′

1

(m′ − x)2 + λ

(A.4)

The responses of model are computed over l
′
= 1, ..., l. Such a solution is very similar

analytically to the LcSA model from equation (6.9) that is expressed by the ratio of

Gaussian functions and therefore further simplified to:

φl′ =

1

exp
((
ml′ − x

)2
/
(
2σ2
))

∑
m′∈M′

1

exp
((
m′ − x

)2
/
(
2σ2
)) (A.5)

Equations (A.4) and (A.5) can be shown to result in approximately similar solutions

if λ and σ are chosen appropriately. We verified this with the second-order Taylor

expansion. For instance, we assumed two 1D anchors such that m1 = 1 and m2 =−1,

λ= 10−5 and σ= 0.25. Equations (A.4) and (A.5) were expanded around point x̄= 0

which resulted in 105

105+1
x+ 1

2 and x+ 1
2 , respectively.

A.2 Optimisation of LcSA cost

Optimising the cost posed in equation (6.10) in order to find parameters (σ, l) can

be performed by a coordinate-descent solver. This requires computing both first and

second derivatives with respect to the parameters. The gradient is approximated by:

∂ξ2

∂σ
≈ ξ2(σ + ∆σ, l)− ξ2(σ −∆σ, l)

2∆σ
(A.6)

∂ξ2

∂l
≈ ξ2(σ, l + ∆l)− ξ2(σ, l −∆l)

2∆l
(A.7)

Parameter ∆σ depends on the descriptors used in the experiments outlined in the

next section. It determines the quality of approximation of the gradient and is set

arbitrarily to 1 and 0.001 for descriptors such that ‖x‖2 =255 and ‖x‖2 =1, respectively.

Parameter ∆l is set to 1 because l-nearest anchors is a positive integer value. Hessian
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matrix increases the speed of convergence for coordinate-descent solvers. It is given by:

∂2ξ2

∂σ2
≈ ξ2(σ + ∆σ, l) + ξ2(σ −∆σ, l)− 2ξ2(σ, l)

(∆σ)2
(A.8)

∂2ξ2

∂l2
≈ ξ2(σ, l + ∆l) + ξ2(σ, l −∆l)− 2ξ2(σ, l)

(∆l)2
(A.9)

∂2ξ2

∂σ∂l
≈ ξ2(σ+∆σ, l+∆l) + ξ2(σ−∆σ, l−∆l)− ξ2(σ+∆σ, l−∆l)− ξ2(σ−∆σ, l+∆l)

4∆σ∆l

(A.10)

The first step in this algorithm is an efficient search for the l-nearest anchors from

dictionary M for each descriptor that is selected for the optimisation procedure and

contained in the descriptor set X . Note that both anchors and descriptors are column

vectors in matricesM∈RD×K and X ∈RD×N , respectively. Symbols D, K, and N are

the descriptor dimensionality, the number of atoms in the dictionary, and the number

of descriptors selected for optimisation. First, the squared `2 norm is decomposed to

obtain matrix D ∈ RN×D containing the squared distances between descriptors and

anchors:

D = ‖X‖22CW ·1T − 2X TM+ 1·‖M‖22CW
T

(A.11)

Operators ‖X‖22CW ∈RN and ‖M‖22CW ∈RK compute the squared `2 norm per column

vector, as indicated by CW , and result in a vector of norms each, respectively. Vector

1 consists of coefficients equal 1. It is used to replicate vectors ‖X‖22CW and ‖M‖22CW
along rows and columns, respectively. This is accomplished by applying the outer

product. Matrix D is sorted by the partial sort algorithm along rows to find the l-

nearest anchors for each descriptor.

There exist 9 different terms of function ξ2 for all combinations of its input param-

eters: {σ−∆σ, σ, σ+∆σ}×{l−∆l, l, l+∆l}. These 9 terms have to be computed

in order to estimate the approximate first and second derivatives given by equations

(A.6-A.10). Evaluating ξ2 in a naive manner entire 9 times is computationally costly.

A fast algorithm that exploits redundancy in computing the membership probabilities

from equation (6.9) used by the cost in equation (6.10) is presented on the following

page, referred to as algorithm 1. The provided snippet takes current σ and l from the

solver and returns matrix ξ2 ∈R3×3 that is required to compute the first and second
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derivatives in equations (A.6-A.10):

Data: X , M, σ, l, ∆σ, ∆l

Result: ξ2∈R3×3 such that

ξ2 =


ξ2(σ−∆σ, l−∆l) ξ2(σ, l−∆l) ξ2(σ+∆σ, l−∆l)

ξ2(σ−∆σ, l) ξ2(σ, l) ξ2(σ+∆σ, l)

ξ2(σ−∆σ, l+∆l) ξ2(σ, l+∆l) ξ2(σ+∆σ, l+∆l)


initialisation:

ξ2 =03×3 (3×3 matrix filled with zeros)

D=‖X‖22CW ·1T − 2X TM+ 1·‖M‖22CW
T

(compute D as explained)

foreach x∈X do

• extract the l+∆l-nearest distances from D into vector d∈Rl+∆l

• extract the l+∆l-nearest anchors from M into matrix M ∈RD×(l+∆l)

• also M
′
=&M(:, 1:end−1)∈RD×l, M ′′

=&M
′
(:, 1:end−1)∈RD×(l−∆l)

(& denotes referencing rather than copying)

d :=−d

• form d̄1, d̄2, d̄3 such that d̄1 =d/(σ−∆σ)2, d̄2 =d/σ2, d̄3 =d/(σ+∆σ)2

• form e1, e2, e3 such that e1 =exp(d̄1), e2 =exp(d̄2), e3 =exp(d̄3)

• according to equation (6.9), we compute 9 sums s for the membership

probability denominator, the remaining 6 enumerator vectors e, and 9

ratios of Gaussians r, then 9 residual approximations x̂, and 9 costs ξ̄2:

for i=1 to 3 do

si=
l+∆l∑
j=1

eji, s
′
i=si −

l+∆l∑
j=l+1

eji, s
′′
i =s

′
i −

l∑
j=l−∆l

eji (efficient sums)

e
′
i=&ei(1 :end−1), e

′′
i =&e

′
i(1 :end−1) (enumerator vectors)

ri=
ei
si , r

′
i=
e
′
i

s
′
i

, r
′′
i =

e
′′
i

s
′′
i

(ratios of Gaussians)

x̂i=M ·ri, x̂
′
i=M

′·r′i, x̂
′′
i =M

′′·r′′i (linear approximations)

ξ̄2
3i=‖x−x̂i‖22, ξ̄2

2i=‖x−x̂
′
i‖22, ξ̄2

1i=‖x−x̂
′′
i ‖22 (costs per x)

end

ξ2 :=ξ2+ξ̄
2

(update the final costs)

end

Algorithm 1: Fast computations of 9 cost coefficients for the partial derivatives.
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A.3 Lower Bound of BoW for @n Operator

The standard BoW with the Avg@n operator and Polynomial Kernel of degree r is

given in equation (A.12) which is then expanded in equation (A.13) and simplified to a

dot product between two vectors in equation (A.14). Such an expression forms a linear

kernel. A simple lower bound of equation (A.13) is proposed in equation (A.15). Note

that it represents Higher-order Occurrence Pooling with the Avg@n operator further

linearised to a dot product between two vectors in equation (A.16).

Ker
(
Φ, Φ̄

)
=
〈
ĥ, ¯̂h

〉r
, and


ĥk = avg srt

(
{φkn}n∈N ,@n

)
¯̂
hk = avg srt

({
φ̄kn
}
n̄∈N̄ ,@n

)
=

(
K∑
k=1

avg srt
(
{φkn}n∈N

)
· avg srt

({
φ̄kn̄
}
n̄∈N̄

))r
(A.12)

=
K∑

k(1)=1

...
K∑

k(r)=1

(
avg srt

({
φk(1)n

}
n∈N

)
· ... · avg srt

({
φk(r)n

}
n∈N

)
· (A.13)

· avg srt
({
φ̄k(1)n̄

}
n̄∈N̄

)
· ... · avg srt

({
φ̄k(r)n̄

}
n̄∈N̄

))

=

〈
u∗:
[
⊗r avg srt

n∈N
(φn,@n)

]
, u∗:
[
⊗r avg srt

n̄∈N̄

(
φ̄n̄,@n

) ]〉
(A.14)

≥ 1

@n2r−2

K∑
k(1)=1

...
K∑

k(r)=1

(
avg srt({φk(1)n · ... · φk(r)n}n∈N ,@n)· (A.15)

· avg srt
(
{φk(1)n̄ · ... · φ̄k(r)n̄}n̄∈N̄ ,@n

))

=
1

@n2r−2

〈
avg srt
n∈N

[
u∗: (⊗rφn),@n

]
, avg srt
n̄∈N̄

[
u∗:
(
⊗rφ̄n̄

)
,@n

]〉
(A.16)

IndexesN and N̄ indicate the mid-level features φn and φ̄n̄ from any two chosen images.

Notation avg srt
(
{φkn}n∈N ,@n

)
denotes averaging over the top @n coefficients from set

{φkn}n∈N . Moreover, avg srt
n∈N

(φn,@n) denotes averaging over the top @n coefficients

from set {φ1n}n∈N , then set {φ2n}n∈N , and so on. This results in the following vector:

avg srt
n∈N

(φn,@n) =
[
avg srt

(
{φ1n}n∈N ,@n

)
, avg srt

(
{φ2n}n∈N ,@n

)
, ...
]T
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Equation (A.13) is an upper bound of equation (A.15) as the following inequality holds:

avg srt
({
φk(1)n

}
n∈N

)
· ... · avg srt

({
φk(r)n

}
n∈N

)
(A.17)

=
1

@n

∑
n∈N ∗

k(1)

φk(1)n · ... ·
1

@n

∑
n∈N ∗

k(r)

φk(r)n

=
1

@nr
∑

n∈N ∗
k(1)

φk(1)n · ... ·
∑

n∈N ∗
k(r)

φk(r)n

≥ 1

@nr−1 avg srt({φk(1)n · ... · φk(r)n}n∈N ,@n)

=
1

@nr
∑
n∈N ∗

φk(1)n · ... · φk(r)n (A.18)

Symbols N ∗
k(1)

, ...,N ∗
k(r)

denote indexes of the top @n mid-level features resulting from

sorting by visual word k(1), ..., k(r), respectively. N ∗ denotes indexes of the top @n mid-

level features resulting from sorting by the joint occurrence of visual words k(1), ..., k(r).

Note that 0≤ φkn ≤ 1. Moreover, the above inequality holds as one can always find

φk(1)n(1) · ... · φk(r)n(r) that is greater than φk(1)n · ... · φk(r)n in the following inequality:

∑
n(1)∈N ∗

k(1)

φk(1)n(1) · ... ·
∑

n(r)∈N ∗
k(r)

φk(r)n(r) ≥
∑
n∈N ∗

φk(1)n · ... · φk(r)n (A.19)

Combining MaxExp, AxMin, or Gamma with the @n operator preserves a somewhat

similar bound because MaxExp, AxMin, or Gamma are non-decreasing functions υ(t) :

〈0;∞〉→〈0;∞〉 such that υ(t2)≥υ(t1) if t2≥ t1 and υ(t)≥ t for 0≤ t ≤ 1. Therefore:

υ
(

avg srt
({
φk(1)n

}
n∈N

))
· ... · υ

(
avg srt

({
φk(r)n

}
n∈N

))
(A.20)

≥ υr
(

1

@n1− 1
r

avg srt
1
r ({φk(1)n · ... · φk(r)n}n∈N ,@n)

)
(A.21)

Note that @n and r are typically low value constants, e.g. @n=7 and r≤3.
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A.4 Statistical Significance

The paired t test has been performed to confirm that there is a statistical significance

between Max-pooling and the proposed @n operator, presented in chapter 6, as well as

between FK and Second-order Occurrence Pooling from chapter 7.

Figure 6.7. First, we demonstrate that MaxExp, AxMin, and Gamma operators are

not statistically different. The theoretical similarity of these operators is argued in

section 6.4.2. For MaxExp and Gamma groups resulting in 57.5±0.7 and 58.5±0.7%

accuracy, the two-tailed P value equals 0.0538. By conventional criteria, this difference

is considered to be not quite statistically significant. Groups, MaxExp and AxMin

scored 57.5±0.7 and 57.5±0.5% accuracy. This difference is not statistically significant.

Table 6.3. For Max-pooling and AxMin@n (SC, SPM, 30 images/class) groups re-

sulting in 80.4±0.6 and 81.3±0.6% accuracy, the two-tailed P value equals 0.045. By

conventional criteria, this difference is considered to be statistically significant. For

Max-pooling and AxMin@n (SC, SCC, 30 images/class) groups resulting in 68.0±0.5

and 71.6±0.4% accuracy, the two-tailed P value is ≤0.0001. By conventional criteria,

this difference is considered to be extremely statistically significant. Also the results for

Max-pooling and AxMin@n groups given LcSA are statistically significantly different.

Table 6.5. For Max-pooling and AxMin@n groups given SC, LLC, and LcSA resulting

in 93.4±0.3 and 94.4±0.4, 89.4±1.6 and 92.8±0.8, and 90.0±0.2 and 93.3±0.5% accuracy,

respectively, the two-tailed P values are 0.0257, 0.0302, and 0.0004. Therefore, the

differences in results given SC and LLC are both statistically significant. The difference

given LcSA is considered to be extremely statistically significant.

Table 7.2. For FK and Second-order Occurrence Pooling (uni-modal r = 2) groups

given 15 images/class, the results are 75.7±0.5 and 76.6±0.5% accuracy. In case of 30

images/class, these groups score 82.2±0.4 and 83.6±0.4% accuracy. The two-tailed P

values are 0.0216 and 0.0006 given 15 and 30 images/class. By conventional criteria,

these differences are considered to be statistically significant and extremely statistically

significant, respectively.

For convenience, the t test calculator from [GraphPad, 2013] was used.
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A.5 Activation Space of Various Coders

To introduce the SA, LcSA, LLC, and SC coding approaches better, we illustrate how

they are affected by the coding parameters. Plots A.1 (a-c) present SA membership

probabilities forming multidimensional activation functions spanned around four arbi-

trarily chosen anchors. Depending on σ, plot (a) shows SA acting as HA while plot

(c) has locally linearised activation slopes. Plot (d) presents the probabilities of LcSA

spanned locally between l= 2 nearest neighbours of any given descriptor. The slopes

are further linearised and appear similar to LLC shown in plot (e). Note, LcSA and

LLC (unlike SA) have no overlapping activations φk 6= 0 for descriptors that are not

neighbours, e.g. x= [5,−5]T and x= [−5, 5]T , this depends on parameter l. Plots in

figure A.1 (f-h) illustrate Sparse Coding activations (we rescaled these plots to 〈0; 1〉

range). Plot (f) shows that SC appears to act as HA for large α (however, true mag-

nitude ‖φ‖1 =1/α in this case). Plot (g) shows a case for moderate α. Plot (h) shows

that for low α the largest φk are yielded for x situated far from anchors mk. Plot (i)

shows that increasing the `2 norm of the anchor denoted by ’x’ decreases its `1 norm

regularisation cost and enables its corresponding activations (a new slope). SC sup-

presses any φk that pay a large `1 norm cost. Plot (j) shows negative activations of SC

(we reversed the sign to be positive) denoted as 1’, 2’, and 3’. Vectors x inducing the

negative values of these activations are far from the corresponding anchors 1, 2, and 3.
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(a) SA, σ2=0.1 (b) SA, σ2=1 (c) SA, σ2=9

(d) LcSA, σ2=9, l=2 (e) LLC, l=2 (f) SC, α=10

(g) SC, α=1 (h) SC, α=0.1 (i) SC, α=1

(j) SC, α=1

Figure A.1: Activations φk for arbitrarily chosen k = 1, ..., 4 anchors mk ∈ 〈−5; 5〉2

and descriptors x= [x1, x2]T ∈ 〈−5; 5〉2. Membership probabilities given by (a-c) SA

in equation (4.4) for various smoothing factors σ. (d) LcSA probabilities according to

equation (6.9) for l=2 nearest neighbours. (e) LLC activations according to equation

(6.8). Activations given by (f-h) Sparse Coding with sparsity varied by α and responses

rescaled to 〈0; 1〉 range. (i) Enabling activations of the anchor marked as ’x’ by increas-

ing its `2 norm. (j) Sparse Coding with dropped non-negativity constraint. Anchors

(1-3) induce positive (1-3) and negative (1’,2’,3’) activations. Best viewed in colour.
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