

Outline

1. [Motivation](#page-1-0)

- 2. [Shallow Domain Adaptation methods](#page-7-0)
- 3. [DA using Deep Learning](#page-19-0)
- 4. [Deep Domain Adaptation Methods](#page-29-0)
- 5. [Beyond image classification](#page-39-0)

Image Classification

Domain Shift

Domain adaptation (DA)

Leveraging labeled data in one or more related domains, referred to as *source domains*, to learn a classifier for data in a *target domain*.

- Unsupervised (US) DA when no label is available in the target domain
- I Semi-supervised (SS) DA when a few labels are available in the target domain

Example scenarios

Object detection

Image segmentation

Document image categorization

Action recognition

Person Re-identification

Key idea: solve the distribution mismatch

By finding feature representation/embedding where the distributions between source and target match.

The distribution mismatch, is measured by the Maximum Mean Discrepancy¹ (MMD):

$$
\textit{MMD}(S, T) = \Big\|\frac{1}{N_S}\sum_{i=1}^{N_S}\psi(\mathbf{x}_i^S) - \frac{1}{N_t}\sum_{j=1}^{N_t}\psi(\mathbf{x}_j^t)\Big\|_{\mathcal{H}}
$$

in the Reproducing Kernel Hilbert Space (RKHS).

¹**Borgwardt** *et al.***, Integrating structured biological data by kernel maximum mean discrepancy, Bioinformatics (22), 2006.** @2018 NAVER LABS. All rights reserved. 7

Outline

2. [Shallow Domain Adaptation methods](#page-7-0)

- 4. [Deep Domain Adaptation Methods](#page-29-0)
-

Shallow Domain Adaptation Methods

- **Instance re-weighting**
	- Correcting the sample bias, Dudik *et al*., NIPS'05, Sugiyama *et al*., NIPS'07
	- Transfer Adaptive Boosting, Dai *et al*., ICML'07, Al-Stouhi *et al*., PKDD'11
- **Parameter adaptation**
	- Adjust SVM parameters, Yang *et al*., MM'07, Bruzzone *et al*., PAMI'10
	- Multiple Kernel Learning, Duan *et al*., CVPR'10
- **Feature augmentation methods**
	- Frustratingly easy feature augmentation, Daume *et al*., CORR'09
	- Geodesic Flow Sampling (GFS), Gopalan *et al*., ICCV'11
	- Geodesic Flow Kernel, (GFK), Gong *et al*., CVPR'12
- ► Feature space alignment
	- Subspace Alignment (SA), Fernando et al., ICCV'13
	- Correlation Alignment (CORAL), by Sun *et al*., AAAI'15
- **Feature space transformation**
	- Unsupervised and supervised (most popular, see next)
	- Local transformation, FarajiDavar *et al*., BMVC'14, Courty *et al*., CORR'15
- ▶ Heterogeneous feature transformation
	- Dictionary Learning, Shekhar *et al*., CVPR'13
	- Heterogeneous Spectral Mapping, Shi *et al*., ICDM'10
	- Domain Adaptation Manifold Alignment, Wang *et al*., IJCAI'11

Feature space transformation

Learning a common feature projection ϕ by minimizing the distributions mismatch.

Image: Courtesy to Dong Xu.

Unsupervised feature transformation

learns the transformation without using any class labels

Supervised feature transformation

- \triangleright exploits class labels only from source (US scenario)
- exploits class labels from both source and target (SS scenario)

US feature transformation methods

- **Transfer Component Analysis (TCA), Pan et al., IJCAI'09**
	- minimizes the distance between source and target means in the subspace
- **Marginalized Denoising Autoencoders (MDA), Chen et al., ICML'12**
	- reconstructs original features from their noised counterparts
- I **Domain Invariant Projection** (DIP), Baktashmotlagh *et al*., ICCV'13
	- compares directly the distributions in the RKHS
- **Transfer Sparse Coding (TSC), Long** *et al.***, CVPR'13**
	- learns robust sparse representations
- I **Statistically Invariant Embedding** (SIE), Baktashmotlagh *et al*., CVPR'14
	- minimizes the Hellinger distance on a Riemannian manifold
- **Transfer Joint Matching (TJM), Long** *et al.***, CVPR'14**
	- combines MMD minimization and instance re-weighting

US results on the Office-Caltech dataset

- **SA** Subspace Alignment, Fernando *et al*., ICCV'13
- **CORAL** Correlation Alignment, Sun AAAI'15
- **GFK** Geodesic Flow Kernel, B. Gong *et al*., CVPR'12
- **TCA** Transfer Component Analysis, Pan *et al*., IJCAI'09
- **SIE** Statistically Invariant Embedding, Baktashmotlagh *et al*., CVPR'14
- **JDA** Joint Distribution Adaptation, Long *et al.*, ICCV^{'14}
- **TJM** Transfer Joint Matching, Long *et al*., CVPR'14
- **ATTM** Adaptive Transductive Transfer Machines, Farajidavar *et al*., BMVC'14
- **MDA** Marginalized Denoising Autoencoders, Chen *et al*., ICML'12

Feature Space Alignment: SA and CORAL

Subspace Alignment (SA)

Learns an alignment M between the PCA subspaces **X***^s* and **X***^t* of the source and target space respectively:

 $M^* = \text{argmin} \|X_s M - X_t\|$

Correlation Alignment (CORAL)

The main idea is a "whitening" of the source data using its covariance **C***s* followed by a "re-coloring" using the target covariance matrix **C***^t* :

$$
\mathbf{X}_s \ast \mathbf{C}_s^{-1/2} \ast \mathbf{C}_t^{-1/2}
$$

Marginalized Denoising Autoencoders²

MDA

Using drop-out noise and marginalizing out the corruption yields closed form solution for W, which depends only on the data covariance and the drop-out noise level.

Stacked MDA

Can be easily made "deep", by stacking several MDA layers. Nonlinearities between layers and concatenation of several layers improves the results.

² Chen *et al.*, Marginalized Stacked Denoising Autoencoders for Domain Adaptation, ICML'12 @2018 NAVER LABS. All rights reserved. 14

Supervised feature transformation methods

Exploit class labels from source and when available from target.

- ▶ Max-Margin Domain Transform (MMDT), Hoffman *et al.*, ICLR^{'13}
	- optimizes jointly the transformation and classifier
- ▶ Joint Distribution Adaptation (JDA), Long *et al.*, ICCV'13
	- adapts both the marginal and the conditional distribution between domains
- I **Adaptation Regularization based TL** (ARTL), Long *et al*., TDKE'14
	- combines structural risk, manifold consistency and discrepancy loss
- ▶ Joint Distribution Optimal Transport (JDOT), Courty, *et al.*, NIPS'17
	- minimizes an optimal transport between joint distributions

Extensions proposed for unsupervised feature transformation methods:

- ▶ Semi-supervised Transfer Component Analysis (SSTCA), Pan *et al.*, TNN'11
- ▶ Domain Invariant Projection (DIP-CC), Baktashmotlagh *et al.*, ICCV'13
- ▶ Regularized Domain Instance Denoising (eMDA), Csurka *et al.*, TASK-CV'16

Metric Learning (ML) based DA methods

Exploit class labels from both source and target.

- I **Regularized Distance Metric Learning** (R-DML), Zha *et al*., IJCAI'09
	- uses either Log-determinant or Manifold regularization
- ▶ Information-Theoretic Metric Learning (ITML), Saenko *et al.*, ECCV'10
	- uses Information-Theoretic Metric to learn a distance across domains
- I **Bayes Nearest Neighbor based DA** (NBNN-DA), Tommasi *et al*., ICCV'13
	- combines Naive Bayes Nearest Neighbor sample selection with ITML
- I **Domain Specific Class Means** (MLDSCM), Csurka *et al*., TASK-CV'14
	- minimizing soft-max distances to domain specific class means
	- can take advantage of multiple sources

SS results on Office-Caltech dataset

- **GFK** Geodesic Flow Kernel, B. Gong *et al*., CVPR'12
- **SA** Subspace Alignment, Fernando *et al*., ICCV'13
- **MMDT** Max-Margin Domain Transforms, Hoffman *et al*., ICLR'13
- **SSTCA** Semi-Supervised TCA, Pan *et al*., TNN'11
- **ITML** Information Theoretic Metric Learning, Saenko *et al*., ECCV'10
- **MLDSCM** ML for Domain Specific Class Means, Csurka *et al*., TASK-CV'14

Domain Specific Class Means³ **(DSCM)**

DSCM

Easily handles multiple domains *d*, where x_i is assigned to the class for which the weighted soft-max distances to the corresponding domain specific class means (μ_i^d) is minimal.

MLDSCM

Learns a transformation **W** minimizing the weighted soft-max distances for each instance:

$$
p(c|\mathbf{x}_i) = \frac{\sum_d w_d e^{(-\frac{1}{2}||\mathbf{W}\mathbf{x}_i - \mathbf{W}\boldsymbol{\mu}_\alpha^d||)}}{\sum_{c'} \sum_d w_d e^{(-\frac{1}{2}||\mathbf{W}\mathbf{x}_i - \mathbf{W}\boldsymbol{\mu}_{c'}^d||)}}
$$

³Csurka *et al.*, Domain adaptation with a domain specific class means classifier. TASK-CV'14 ω 2018 NAVER LABS. All rights reserved. 18

To summarize

Early methods require labeled target examples

- \blacktriangleright *e.g.* instance re-weighting, parameter adaptation,
- \blacktriangleright hence, can be applied only to semi-supervised DA scenario **Simple methods can performs pretty well**
	- ▶ *e.g.* Subspace Alignment, Correlation Alignment, MDA
	- \blacktriangleright they have no/few parameters or closed form solutions

Feature space transformation are the most popular ones

- \blacktriangleright many of them relies on the Maximum Mean Discrepancy (MMD)
- \triangleright can be unsupervised or supervised exploiting labels
- optimizing conditional or joint distributions helps

Best performing methods

- *e.g.* Transfer Joint Matching, Adaptive Transductive Transfer Machines
- \triangleright joint marginal and conditional distributions and instance re-weighting

Outline

3. [DA using Deep Learning](#page-19-0)

- 4. [Deep Domain Adaptation Methods](#page-29-0)
-

DA using Deep Learning

- ▶ Shallow methods using deep features
	- use the deep model as feature extractor
	- apply any shallow DA method using these features
- ▶ Using fine-tuned deep architectures
	- fine-tune the deep model on the source
	- apply the fine-tuned model on the target
- ▶ Shallow methods using fine-tuned deep features
	- fine-tune the deep model on the source
	- use the fine-tuned model as feature extractor
	- apply any shallow DA method using these features
- I **Deep DA models**
	- deep Siamese architectures built for domain adaptation
	- the streams, corresponding to source and target, are initialized with a deep model fine-tuned on the source

Shallow methods using deep features

Deep models used as feature extractors⁴

- Activations of the deep CNN model can be used as image representation.
- Popular models are: AlexNet, VGG, ResNet or GoogleNet.
- Best candidates are layers preceding the softmax layer (fc6, fc7, PreLogit).

- Using deep features in shallow methods allows a gain above 20%.
- These features being more abstract decreases the domain bias.

⁴ Donuahe *et al.*, DeCAF: A deep convolutional activation feature for generic visual recognition, ICML'14. @2018 NAVER LABS. All rights reserved. 22

Fine-tuning the model on the source

Fine-tuning on the LandmarkDA⁵ **dataset**

⁵[https://www.researchgate.net/publication/319208011_LandMarkDA_domain_adaptation_dataset.](https://www.researchgate.net/publication/319208011_LandMarkDA_domain_adaptation_dataset .)

Discrepancy based DAN

Joint distribution discrepancy⁶ (JDD):

$$
\mathcal{L}_{JDD} = \left\| \frac{1}{N_s} \sum_i^{N_s} \phi(\mathbf{X}_i^s) \otimes \psi(\widehat{\mathbf{Y}}_i^s) - \frac{1}{N_t} \sum_i^{N_t} \phi(\mathbf{X}_i^t) \otimes \psi(\widehat{\mathbf{Y}}_i^t) \right\|_{\mathcal{F} \otimes \mathcal{G}}^2,
$$

6 Long *et al.*, Deep Transfer Learning with Joint Adaptation Networks, CORR'15 @2018 NAVER LABS. All rights reserved. 25

Shallow Adaptation Network (SDAN)

Joint distribution discrepancy⁷ (JDD):

$$
\mathcal{L}_{JDD} = \left\| \frac{1}{N_s} \sum_i^{N_s} \phi(\widehat{\mathbf{X}}_i^s) \otimes \psi(\widehat{\mathbf{Y}}_i^s) - \frac{1}{N_t} \sum_i^{N_t} \phi(\widehat{\mathbf{X}}_i^t) \otimes \psi(\widehat{\mathbf{Y}}_i^t) \right\|_{\mathcal{F} \otimes \mathcal{G}}^2,
$$

⁷ Long *et al.*, Deep Transfer Learning with Joint Adaptation Networks, CORR'15 @2018 NAVER LABS. All rights reserved. 26

SDAN results

Findings:

- \triangleright SDAN allows for significant improvement over training only on the source.
- \blacktriangleright JDD results show the importance of considering the prediction layer ($\hat{\mathbf{Y}}$).
- I BL with GoogleNet or RestNet features can be better that SDAN obtained with AlexNet or VGG features.
- On Office31, GoogleNet BL is better than any SOA method built on AlexNet (best 80.4% with LRT, Sener *et al*., NIPS'16)

Always compare methods built on the same original architectures and shallow methods using features extracted from the same deep model!

Deep DA model versus deep features

Findings:

- If the domain shift is small $(D \leftrightarrow W)$, almost no gain is obtained with adaptation.
- Fine-tuning the deep model on the source outperforms the shallow model.
- If the target (A, Ph) is closer to the initial domain (ImageNet) than the source (W,D,Pt,Dr), fine tuning on the source seems sufficient. In the opposite case, adaptation yields strong improvements.
- **In Shallow methods using fine-tuned model deep features is close to best.**

To summarize

Main advantages of shallow methods

- \blacktriangleright they are simple and low cost solutions
- \blacktriangleright same architecture can be applied to any vectorial representation
- \blacktriangleright it is important to use strong representations (deep features)

Main advantages of deep methods

- they can adjust the feature representation to the problem
- If appropriately trained they often outperform the shallow methods

Shallow methods using fine-tuned deep features

- \triangleright combines the strength of deep learning and domain adaptation
- \triangleright close to results obtained with the corresponding deep architecture
- \triangleright no need to build DA dedicated (Siamese) deep architectures
- \blacktriangleright it requires less computational cost, easier to deploy on mobile phone
- \blacktriangleright the fine-tuning can be done in advance, before seeing the target

Outline

-
-
- 4. [Deep Domain Adaptation Methods](#page-29-0)
-

Discriminative models

Main framework

- Siamese architecture
- pre-trained on the source
- cross-entropy on source
- discrepancy and/or

adversarial losses

Minimizing the feature discrepancy

▶ DAN, Long *et al.*, ICML'15, DeepCORAL, Sun *et al.*, TASK-CV'16 **Minimizing the joint feature/label distributions**

■ DeepJDOT, Damodaran *et al.*, ECCV'16, JAN, Long *et al.*, ICML'17 **Encouraging domain confusion (adversarial)**

▶ DANN, Ganin *et al.*, JMLR'16, ADDA, Tzeng *et al.*, CVPR'17

Combine discrepancy minimization with adversarial learning

■ MCDDA, Saito, *et al.*, CVPR'18, CDAN, Long *et al.*, NIPS'18

Per layer based adaptations

Automatic Domain Alignment Layers (ADial) Carlucci *et al*., ICCV'17

- \blacktriangleright designed to match the source and target feature distributions to a reference one **Collaborative and Adversarial Network**, (CAN), Zhang *et al*., CVPR'18
- \blacktriangleright to learn simultaneously domain-informative and uninformative features **Residual Parameter Transfer**, (RPT) Rozantsev *et al*., CVPR'18
	- used to learn the parameter adaptation between source and target layers

Generative models

Coupled Generative Adversarial Networks (CoGAN), Liu *et al*., NIPS'16

- \triangleright couples two GANs, each corresponding to one of the domains **Pixel-Level Domain Adaptation** (PixelDA), Bousmalis *et al*., CVPR'17
- adapts source images to appear as if drawn from the target domain **Domain Transfer Network** (DTN), Taigman, *et al*., ICLR'17
	- \blacktriangleright relies on cross-domain image translation

Aligning Domains using GAN, (ADGAN), Sankaranarayanan *et al*., CVPR'18

 \triangleright combines joint feature learning with adversarial image generation

Duplex Generative Adversarial Network (DupGAN), Hu *et al*., CVPR'18

uses a duplex discriminator, one for each domain

Auto-encoder based models

Deep Reconstruction Classification Network (DRCN), Ghifary *et al*., ECCV'16

 \blacktriangleright alternates between source label prediction and target data reconstruction

Domain Separation Networks (DSN), Bousmalis *et al*., NIPS'16

 \blacktriangleright shared and domain specific encodings and one shared decoding

Curriculum learning

Learning Transferable Representations (LTR), Sener *et al*., NIPS'16

 \triangleright jointly optimizing representation, domain transformation and label inference **Associative Domain Adaptation** (ADA), Haeusser *et al*., ICCV'17

 \blacktriangleright reinforcing label associations between domains in the embedding space **Asymmetric Tri-training** (ATriDA) *et al*., PMLR'17

 \blacktriangleright leverages three classifiers trained simultaneously with real and pseudo-labels **Mixture of Alignments of Scatter Tensors** (MAST), Koniusz *et al*., CVPR'17

 \blacktriangleright aligns higher-order scatter statistics between source and target domains

Self-ensembling for visual domain adaptation, (SelfEns) French *et al*., ICLR'18

 \triangleright exponential moving average of the student network weights

Similarity Learning Network (SimNet), Pinheiro, CVPR'18

I learns domain-invariant features and categorical prototype representations jointly

To summarize

Discriminative models

- they are easy to train, straightforward and popular approaches
- \blacktriangleright minimizing joint feature/label distributions is better (DeepJDOT, JAN)
- \triangleright best is to combine them with adversarial learning (MCDAA, CDAN)
- \blacktriangleright per layer based adaptation can bring further improvements

Generative and reconstruction models

- \blacktriangleright mainly tested on classes with relatively low intra-class variation (digits)
- they outperform the discriminative models (except DeepJDOT) on these data
- \triangleright best GANs (DupGAN) and best reconstruction (DSN) performs on par

Exploiting pseudo labels

- these methods works in general pretty well
- \blacktriangleright LTR seems to have the highest gain

However !

The above observations are far from being conclusive

- \blacktriangleright the results come from various papers
- \triangleright for the same method results may vary (I took the best)
- \triangleright only few methods were compared on the same datasets
- \blacktriangleright the methods often used different deep architectures
- \blacktriangleright the used datasets are small and not challenging enough
- \triangleright not clear how the parameters of each model was tuned !!

How to tune the parameters of DA models?

Prohibited:

- tuning the model based on the test results
- using at any time target labels, even with cross validation

Possible, but not always optimal:

- \blacktriangleright tuning based on the results obtained on the source
- using the model with fixed parameters for all the experiments
- I consider reverse cross-validation, Ganin *et al*., JMLR'16

Preferred, but not always obvious:

- \triangleright using measures nor requiring target labels (distribution divergence)
- using a validation domain similar but not the same as target

What we need?

More DA challenges and Leader-boards

 \triangleright VisDa 2017 and 2018 Challenges, with continuous leaderboard on CodaLab

More challenging datasets:

 \triangleright OpenMIC, Koniusz, ECCV'18, CMPlaces, Castrejón, CVPR'16

MIC Open

CMPlaces

Outline

-
-
- 4. [Deep Domain Adaptation Methods](#page-29-0)
- 5. [Beyond image classification](#page-39-0)

Beyond image classification

Casting the problem as classification

- ► video concept detection: Yang *et al.*, ICCV'13
- activity recognition: FarajiDavar *et al.*, BMVC'12, Zhu *et al.*, BMVC'13
- ▶ 3D pose estimation: Yamada *et al.*, ECCV'12

Data augmentation and synthetic data

- I pose estimation, Shotton *et al*., CVPR'11, Su *et al*., ICCV'15
- detection: Pepik *et al.*, CVPR'12, Peng *et al.*, ICCV'15
- ▶ segmentation: Ros *et al.*, CVPR'16, Satkin *et al.*, BMVC'12
- ▶ tracking: Gaidon *et al.*, CVPR'16, Vazquez *et al.*, PAMI'14
- actions recognition, De Souza et al., CVPR'17

Model adaptation between domains

 \triangleright adapting or designing deep models for various tasks

Semantic segmentation -1-

Curriculum learning based

- ► Curriculum domain adaptation, Zhang, *et al.*, ICCV'17
- ▶ Class-Balanced Self-Training, Zou, et al., ECCV'17

Main idea: start from easier tasks, and then refine relying on predicted labels

Semantic segmentation -2-

GAN based image transformation

- I Cycle-consistent adaptation framework (CYCADA), Hoffman *et al*., CORR'18
- I Learning from Synthetic Data, Sankaranarayanan *et al*., CVPR'18
- I Representation Adaptation Networks (RAN), Zhang *et al*., CORR'18

Main idea: style transfer in general from synthetic to real images

Semantic segmentation -3-

GAN integrated into the segmentation framework

- ► FCN in wild, Hoffman *et al.*, CORR'17
- Adapt Structured Output, Tsai et al., CORR'18
- ▶ Conservative Loss, Zhu et al., CORR'18
- ▶ Semi-Supervised Semantic Segmentation, Hung *et al.*, CORR'18
- ▶ Conditional Generative Adversarial Network, Hong *et al.*, CVPR'18

Main idea: forcing target features to resemble to source features

Object detection

CNNs pre-trained with image level annotations

- I combined with region proposals, Oquab *et al*., CVPR'14, Girshick *et al*., CVPR'14
- **IDE** learns to transform the classifier into object detector, Hoffman *et al.*, NIPS'14

Style-transfered with CycleGAN

Fine-tune the model on transformed images, Inoue *et al.*, CVPR'18

Adapting the CNN based object detectors

- Align R-CNN features with SA, Raj *et al.*, BMVC'15
- ► Minimize MMD between image level features features, Chanda *et al.*, BMVC[']17
- ► Gradient reverse layer both at image and at instance level, Chen *et al.*, CVPR'18

And several other tasks

Person Re-ID

- ▶ Person Transfer GAN, Wei, *et al.*, CVPR'18
- ▶ Pose Transferrable Person Re-Identification, Liu *et al.*, CVPR'18
- ► Camera Style Adaptation, Zhonget al., CVPR'18
- Learning from rendered 3D humans, Bak *et al.*, ECCV'18

Action recognition

► 3D Body Skeletons via Kernel Feature Maps, Yusuf and Koniusz, BMVC'18

Depth estimation

▶ AdaDepth, Kundu et al., CVPR'18

3D keypoint estimation

▶ Regression and view consistency loss, Zhou *et al.*, ECCV'18

Autonomous vehicle control command

▶ Real-to-Virtual Domain Unification, Yang, *et al.*, ECCV'18

Recent Book on Domain Adaptation

@ 2017

Domain Adaptation in **Computer Vision Applications**

Editors: Csurka, Gabriela (Ed.)

- **Introductory part**
	- a comprehensive survey and a deeper look at dataset bias
- ▶ Part I: Shallow Domain Adaptation Methods
	- GFK, SA, TCA, DME, ATTM, MSDA
- **Part II: Deep Domain Adaptation Methods**
	- deepCoral, DANN, Deep Transfer Across Domains and Tasks
- **Part II: Beyond Image Classification**
	- Segmentation, object and object part detection, re-identification
- ▶ Beyond Domain Adaptation: Unifying Perspectives
	- domain generalization, multi-domain multi-task learning