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Image Classification

ImageNet training set: 1000 classes

s

Eiffel Tower
Great Wall of China

Deep Learning

N R - AN A NN g g Great Wall of China?

Great Wall of China Eiffel Tower " Accuracy ~ 98 %
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Train: Images
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Test: Drawings

Accuracy 50-70 %
(depending on the model)

Need
Domain
Adaptation!!!




Domain adaptation (DA)

Leveraging labeled data in one or more related domains, referred to as source
domains, to learn a classifier for data in a target domain.

SOURCE DOMAIN

Great Wall of China Eiffel Tower ?

\LEARNINV
Ds = {(XL Y / Dy ={Xi}L)

SUPERVISED LEARNING # h UNSUPERVISED LEARNING

TARGET DOMAIN

> Unsupervised (US) DA when no label is available in the target domain
> Semi-supervised (SS) DA when a few labels are available in the target domain
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Example scenarios

Object recognition Object detection Image segmentation

Document image categorization Action recognition

VO s O TS
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Key idea: solve the distribution mismatch

By finding feature representation/embedding where the distributions between source
and target match.

Prawiny

VA -

The distribution mismatch, is measured by the Maximum Mean Discrepancy' (MMD):

1 & 1 X
MMD(S, T) = || > wt) = 5 S_vixp,
i=1 j=1

in the Reproducing Kernel Hilbert Space (RKHS).

1

etal., data by kernel maximum mean discrepancy, Bioinformatics (22), 2006.
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2. Shallow Domain Adaptation methods
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Shallow Domain Adaptation Methods

» Instance re-weighting
® Correcting the sample bias, Dudik et al, NIPS’05, Sugiyama et al, NIPS'07

® Transfer Adaptive Boosting, Dai etal, ICML07, Al-Stouhi etal, PKDD'11

> Parameter adaptation
® Adjust SVM parameters, Yang etal, MM’07, Bruzzone et al, PAMI’10

® Multiple Kernel Learning, Duan etal, CVPR’10

> Feature augmentation methods
¢ Frustratingly easy feature augmentation, Daume etal, CORR’09
® Geodesic Flow Sampling (GFS), Gopalan etal., IcCV'11

® Geodesic Flow Kernel, (GFK), Gong etal, CVPR’12

> Feature space alignment
® Subspace Alignment (SA), Fernando etal, ICCV’'13

® Correlation Alignment (CORAL), by Sun etal, AAAI’'15

> Feature space transformation
® Unsupervised and supervised (most popular, see next)

® Local transformation, FarajiDavar etal, BMVC'14, Courty etal., CORR'15

> Heterogeneous feature transformation
® Dictionary Learning, Shekhar etal, CVPR'13
® Heterogeneous Spectral Mapping, Shi etal, IcCDM’ 10

® Domain Adaptation Manifold Alignment, Wang et al,, IJCAI’11
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Feature space transformation

Learning a common feature projection ¢ by minimizing the distributions mismatch.

s

When source and target
domains only have some
overlapping features. (lots
of features only have
support in either the source
or the target domain)

Image: Courtesy to Dong Xu.
Unsupervised feature transformation

> learns the transformation without using any class labels
Supervised feature transformation

> exploits class labels only from source (US scenario)

> exploits class labels from both source and target (SS scenario)
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US feature transformation methods

» Transfer Component Analysis (TCA), Pan etal, IJCAI'09
® minimizes the distance between source and target means in the subspace
» Marginalized Denoising Autoencoders (MDA), Chen etal, ICML'12
® reconstructs original features from their noised counterparts
> Domain Invariant Projection (DIP), Baktashmotlagh etar, ICCV’13
® compares directly the distributions in the RKHS
» Transfer Sparse Coding (TSC), Long etal, CVPR’13
® |earns robust sparse representations
> Statistically Invariant Embedding (SIE), Baktashmotlagh etal, CVPR’14
® minimizes the Hellinger distance on a Riemannian manifold
> Transfer Joint Matching (TJM), Long etal, CVPR’14

¢ combines MMD minimization and instance re-weighting
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C->A D->A W->A A->C D->C W->C A->D C->D W->D
SA 52.7 38.0 39.4 41.6 448 34.7 46.4 49.0 78.9
[CORAL 52.1 37.7 36.0 45.1 33.8 33.7 39.5 45.9 86.6
GFK 54.1 33.1 36.6 40.1 39.2 28.9 35.7 446 81.2
[TCA 38.2 32.1 30.1 27.8 317 293 33.1 41.4 87.3
SIE 46.7 37.4 413 42.7 34.6 35.0 403 441 73.9
UDA 44.8 33.1 32.8 39.4 31.5 31.2 39.5 45.2 89.2
LY 58.6 35.1 40.8 45.7 39.6 34.8 42.0 49.0 83.4
IATTM 60.9 38.7 39.7 42.9 324 34.0 39.5 50.3 89.8
MDA 54.1 373 38.8 44.6 33.2 35.4 39.5 44.6 82.8

A->W

40.7
44.4
38.6
37.6
42.0
38.0
42.0
50.5
36.6

C->W

42.7
46.4

39
38.6
45.2
41.7
48.8
62.0
48.8

D->W Avg

83.4
84.7
80.3
86.1
74.3
89.5
82.0
88.8
82.3

49.4)
48.8|
46.0|
42.8|
46.5)
46.3]
50.2f
52.5)
48.2]

SA - Subspace Alignment, Fernando et al., Iccv’'13

CORAL - Correlation Alignment, Sun AAAI'15

GFK - Geodesic Flow Kernel, B. Gong et al., CVPR'12

TCA - Transfer Component Analysis, Pan et al., 1JCAI'09

SIE - Statistically Invariant Embedding, Baktashmotlagh et al., cCvPR’14

JDA - Joint Distribution Adaptation, Long et al., Iccv’14

TJM - Transfer Joint Matching, Long et al., CVPR’14

ATTM - Adaptive Transductive Transfer Machines, Farajidavar et al., BMvC’'14
MDA - Marginalized Denoising Autoencoders, Chen et al., IcML'12
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Feature Space Alignment: SA and CORAL

Subspace Alignment (SA) >/
Learns an alignment M between the PCA w2

Source Domain

subspaces Xs and X; of the source and \
target space respectively: —_ [/ XsM

Target Aligned Source Domain

M* = argmin||XsM — X;||

Correlation Alignment (CORAL) s | <
of SN o @"
IO | Ol
The main idea is a "whitening” of the R
source data using its covariance Cg (a) © target (b)

.
«
=]
<
-]
a
®

followed by a "re-coloring” using the
target covariance matrix C;:

XS*CS_1/2*CI_1/2 e >,
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MDA

Using drop-out noise and
marginalizing out the corruption
yields closed form solution for W,
which depends only on the data
covariance and the drop-out
noise level.

Stacked MDA

Can be easily made "deep”, by
stacking several MDA layers.
Nonlinearities between layers
and concatenation of several corruption  reconstruction
layers improves the results. i ik hidden

2Chen et al., Marginalized Stacked Denoising Autoencoders for Domain Adaptation, IcML'12
@2018 NAVER LABS. All rights reserved.



Supervised feature transformation methods

Exploit class labels from source and when available from target.

> Max-Margin Domain Transform (MMDT), Hoffman etal, ICLR’13
® optimizes jointly the transformation and classifier
» Joint Distribution Adaptation (JDA), Long etal, ICCV’'13
® adapts both the marginal and the conditional distribution between domains
> Adaptation Regularization based TL (ARTL), Long etal, TDKE'14
® combines structural risk, manifold consistency and discrepancy loss
> Joint Distribution Optimal Transport (JDOT), Courty, etal, NIPS’17

® minimizes an optimal transport between joint distributions

Extensions proposed for unsupervised feature transformation methods:
» Semi-supervised Transfer Component Analysis (SSTCA), Pan etal, TNN'11
» Domain Invariant Projection (DIP-CC), Baktashmotlagh etal, ICCV’'13
» Regularized Domain Instance Denoising (eMDA), Csurka et al, TASK-CV’16
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Metric Learning (ML) based DA methods

Exploit class labels from both source and target.

» Regularized Distance Metric Learning (R-DML), Zha et al., IJCAI'09

® uses either Log-determinant or Manifold regularization
> Information-Theoretic Metric Learning (ITML), Saenko etal, ECCV’'10

¢ uses Information-Theoretic Metric to learn a distance across domains
> Bayes Nearest Neighbor based DA (NBNN-DA), Tommasi etal, ICCV’'13

® combines Naive Bayes Nearest Neighbor sample selection with ITML

» Domain Specific Class Means (MLDSCM), Csurka et al, TASK-CV'14
® minimizing soft-max distances to domain specific class means
® can take advantage of multiple sources
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SS results on Office-Caltech dataset

Caltech-256

C->A D->A W->A A->C D->C W ->C A->D C->D W->D A->W C->w D->W  Average

GFK 46.1 46.2 321 39.6 339 321 50.9 55 741 56.9 57 74.6 49.9
SA 453 4538 448 384 35.8 341 55.1 56.6 823 60.3 60.7 84.8 53.7
MMDT 49.4 469 47.7 36.4 341 322 56.7 56.5 67 64.6 63.8 74.1 525
SSTCA 47.1 40.1 415 404 34.2 335 39 417 77.8 411 36.2 80.5 46.1
mmL 337 303 323 27.3 225 217 337 35 51.3 36 347 55.6 345
MLDSCM 50.6 48.8 48.4 349 34.2 334 62.1 61.6 64.7 66.1 65.1 715 53.4

e GFK - Geodesic Flow Kernel, B. Gong et al., CVPR'12

e SA - Subspace Alignment, Fernando et al., 1IcCV’'13

o MMDT - Max-Margin Domain Transforms, Hoffman et al., ICLR’13

e SSTCA - Semi-Supervised TCA, Pan et al., TNN'11

o ITML - Information Theoretic Metric Learning, Saenko et al., ECCV’'10

o MLDSCM - ML for Domain Specific Class Means, Csurka et al., TASK-CV'14
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Domain Specific Class Means® (DSCM)

DSCM

Easily handles multiple domains d,
where Xx; is assigned to the class for
which the weighted soft-max
distances to the corresponding
domain specific class means (;L,‘.’) is
minimal.

MLDSCM

Learns a transformation W
minimizing the weighted soft-max
distances for each instance:

~ 3w —wid
5y wgel~ B 1Wxi—Wadl)

o d Wde(7 2w = Wi, 1)

p(elx;) =

3Csurka et al., Domain adaptation with a domain specific class means classifier. TASK-Cv'14
@2018 NAVER LABS. All rights reserved.



To summarize

Early methods require labeled target examples
> e.g. instance re-weighting, parameter adaptation,
> hence, can be applied only to semi-supervised DA scenario
Simple methods can performs pretty well
> e.g. Subspace Alignment, Correlation Alignment, MDA
> they have no/few parameters or closed form solutions
Feature space transformation are the most popular ones
> many of them relies on the Maximum Mean Discrepancy (MMD)
> can be unsupervised or supervised exploiting labels
> optimizing conditional or joint distributions helps
Best performing methods
> e.g. Transfer Joint Matching, Adaptive Transductive Transfer Machines
> joint marginal and conditional distributions and instance re-weighting

@2018 NAVER LABS. All rights reserved.



3. DA using Deep Learning

@2018 NAVER LABS. All rights reserved.
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DA using Deep Learning

v

Shallow methods using deep features
® use the deep model as feature extractor
® apply any shallow DA method using these features

> Using fine-tuned deep architectures
¢ fine-tune the deep model on the source
® apply the fine-tuned model on the target

v

Shallow methods using fine-tuned deep features

¢ fine-tune the deep model on the source
® use the fine-tuned model as feature extractor

® apply any shallow DA method using these features

v

Deep DA models
® deep Siamese architectures built for domain adaptation
® the streams, corresponding to source and target, are initialized with a deep
model fine-tuned on the source

@2018 NAVER LABS. Al rights reserved. 21



Shallow methods using deep features

Deep models used as feature extractors*

> Activations of the deep CNN model can be used as image representation.
> Popular models are: AlexNet, VGG, ResNet or GoogleNet.

> Best candidates are layers preceding the softmax layer (fc6, fc7, PreLogit).

Office Caltech 10 Office 31 (A and W)
100

AlexNet

2,

i @
.
0 te
NN NCM SA GFK TCA JDA MDA )

EBOV MAlexNet

®
S

@
S

5
S

N
S

Using deep features in shallow methods allows a gain above 20%.
These features being more abstract decreases the domain bias.

“Donuahe et al., DeCAF: A deep convolutional activation feature for generic visual recognition, IcML14.
@2018 NAVER LABS. All rights reserved.

22



Fine-tuning the model on the source

ImageNet . Pre-trained model é&osges LandMarkDA
= X Drawings

=== Not applicable

o A
o oM

Fuly-connected
layers

layer

Fine-tuning TN B
25 -

Classes

= 68.7%
(using google

" pocling Fully-connected  Softmax i
o pree o Inception v3)

@2018 NAVER LABS. All rights reserved.
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Fine-tuning on the LandmarkDA?® dataset

LandMarkDA - GNet

Accuracy
o
0l

FT(lg) | FT(7c) FT(7a) FT(6e) FT(6c) FT(6a) | FT(all)
—4—Ph->Pt 595 664 693 749 778 797 76.7
—m—Ph->Dr 47.8 527 553 | 624 663 687 611
—8—Pt->Ph 819 91 93.9 949 946 947 | 933

Pt>Dr 608 729 787 828 821 803 | 79.3
—&—Dr>Ph 766 868 919 | 91.2 92 913 908
——Dr>Pt 663 748 744 | 795 799 809 847

Shttps://www.researchgate.net/publication/319208011_LandMarkDA_domain_adaptation_dataset.
@2018 NAVER LABS. All rights reserved.


https://www.researchgate.net/publication/319208011_LandMarkDA_domain_adaptation_dataset .

Discrepancy based DAN

SOURCE
GNet ) S
s
. \ Ty
['discrepan7 Lcross—entropy

GNet

TARGET

Joint distribution discrepancy® (JDD):

2

Lypp = Z 3(X5) ® p(Y§) — Z #(Xh) ® v(Y})

)

FRgG

SLong et al., Deep Transfer Learning with Joint Adaptation Networks, CORR'15
@2018 NAVER LABS. All rights reserved.



Shallow Adaptation Network (SDAN)

SOURCE Prelogit Layer

2 GNet }/’1\5 Yy
— | G—
@/~ Y; v

Ldzscrepancy Cross—entropy

GNet W: \
N

PreLogit Layer

TARGET

Joint distribution discrepancy’ (JDD):

2

)

F®G

Lypp = H = Z #(X5) ® p(¥§) — Z 3(X1) @ (Y}

7Long et al., Deep Transfer Learning with Joint Adaptation Networks, CORR'15
@2018 NAVER LABS. All rights reserved.
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SDAN - OFF31 SDAN - LandMarkDA
90 95
z = z
e 80 & 85
g g
: B < s
70
65 65
ANet VNet GNet RNet RMAC ANet GNet RNet RMAC RMAC-FT LRMAC
—4—BL-NA 67.8 75.7 839 79.8 812 —e—BL-NA 64.4 69.4 72 777 89.4 89.6
SDAN-MMD-X' 68.8 76.7 84.3 815 82.6 SDAN-MMD-X 69.1 72.6 80.6 823 92.2 92.4
=o~SDAN-JDD-XY 713 80 84.9 84.2 85.9 =4—SDAN-JDD-XY 723 74.3 82.2 87.2 93.8 94

Findings:
> SDAN allows for significant improvement over training only on the source.
> JDD results show the importance of considering the prediction layer (V).

> BL with GoogleNet or RestNet features can be better that SDAN obtained with
AlexNet or VGG features.

» On Office31, GoogleNet BL is better than any SOA method built on AlexNet
(best 80.4% with LRT, Sener etal, NIPS’16)

Always compare methods built on the same original architectures and shallow
methods using features extracted from the same deep model!

@2018 NAVER LABS. All rights reserved.



Deep DA model versus deep features

OFF31 -ANet LandMarkDA-GNet
100 100
%0 %
w0 g ®
g 4
I R
g < 60

Ph->Pt Ph->Dr Pt->Ph Pt->Dr Dr->Ph Dr->Pt Avg

A->D | A>W | DA | D>W| W>A WSD| AVG —e—NA 59.5 478 819 608 766 663 655

e 557 | S06 465 | 934 | 407 @ 9RS | 644 —e—SDAN 69.6 603 885 686 883 701 742
~—e—CORAL 57.1 53.1 511 94.6 473 98.2 66.9

o 38 | o6 si1 | ssa | me  m | 701 ——FT 797 687 947 803 913 809 826

FT+CORAL 657 | 643 485 961 482 998 704 FT +SDAN 813 774 | 953 | 87.8 927 852 866

—e—DCORAL = 668 664 528 95.7 515 992 721 —e—DDAN 852 835 959 912 934 877 895

Findings:
> If the domain shift is small (D<>W), almost no gain is obtained with adaptation.
> Fine-tuning the deep model on the source outperforms the shallow model.

> If the target (A,Ph) is closer to the initial domain (ImageNet) than the source
(W,D,Pt,Dr), fine tuning on the source seems sufficient. In the opposite case,
adaptation yields strong improvements.

> Shallow methods using fine-tuned model deep features is close to best.

@2018 NAVER LABS. All rights reserved.



To summarize

Main advantages of shallow methods

> they are simple and low cost solutions
» same architecture can be applied to any vectorial representation

>

it is important to use strong representations (deep features)

Main advantages of deep methods

>
>

they can adjust the feature representation to the problem
if appropriately trained they often outperform the shallow methods

Shallow methods using fine-tuned deep features

>

>
>
>
>

combines the strength of deep learning and domain adaptation
close to results obtained with the corresponding deep architecture
no need to build DA dedicated (Siamese) deep architectures

it requires less computational cost, easier to deploy on mobile phone
the fine-tuning can be done in advance, before seeing the target

@2018 NAVER LABS. All rights reserved. 29



4. Deep Domain Adaptation Methods

@2018 NAVER LABS. All rights reserved.
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Discriminative models

Main framework [~ Yezo) Q

o Siamese architecture Py .
e pre-trained on the source Saurca o
e cross-entropy on source

e discrepancy and/or w
@ .oe

adversarial losses

Minimizing the feature discrepancy

> DAN, Long etal, IcMU15, DeepCORAL, Sun etal, TASK-CV'16
Minimizing the joint feature/label distributions

» DeepJdDOT, Damodaran etal, ECCV’'16, JAN, Long etal, ICMLU17
Encouraging domain confusion (adversarial)

» DANN, Ganin etal, JMLR’16, ADDA, Tzeng etal, CVPR’17
Combine discrepancy minimization with adversarial learning

» MCDDA, Saito, etal, CVPR’18, CDAN, Long etal, NIPS’18

classification
loss

discrepancy
and/or
adversarial
losses

ffice 31 CNN DAN JAN DANN ADDA
lexNet 70.1 729 76 743 74.7
esNet-50 76.1 80.4 84.3 82.2 82.9

CDAN
76.9
87.7

@2018 NAVER LABS. All rights reserved.
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Per layer based adaptations

=
o\, 2= |

=
o1 w.\ D, ﬁ D,, M
Tond |4 an o
o
Lo

2

Domain Discriminators

Automatic Domain Alignment Layers (ADial) Carlucci etal., ICCV’'17

> designed to match the source and target feature distributions to a reference one
Collaborative and Adversarial Network, (CAN), Zhang etal, CVPR’18

> to learn simultaneously domain-informative and uninformative features
Residual Parameter Transfer, (RPT) Rozantsev etal., CVPR'18

> used to learn the parameter adaptation between source and target layers

ffice31 CNN JAN CDAN  ADial ] ffice31 CNN JAN CDAN RPT CAN ]
lexNet  70.1 76 76.9 771 esnet 76.1 84.3 87.7 81.7 87.2

@2018 NAVER LABS. All rights reserved.
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Generative models

[T T .
- — D
[ 3 . : 7 i ;
28 - — it —
| 108 ) c+1
! % 2 )
s —FA . J D
z A il AN Prw—
|~ J
DupGAN BB
T at c+1

Coupled Generative Adversarial Networks (CoGAN), Liu etal, NIPS’16

> couples two GANs, each corresponding to one of the domains
Pixel-Level Domain Adaptation (PixelDA), Bousmalis etal, CVPR’17

> adapts source images to appear as if drawn from the target domain
Domain Transfer Network (DTN), Taigman, etal, ICLR’17

> relies on cross-domain image translation
Aligning Domains using GAN, (ADGAN), Sankaranarayanan etal, CVPR’18

> combines joint feature learning with adversarial image generation
Duplex Generative Adversarial Network (DupGAN), Hu etal, CVPR’18

> uses a duplex discriminator, one for each domain

@2018 NAVER LABS. All rights reserved.
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Auto-encoder based models

‘Shared Decoder: D(E.(x) + E,(x))

smmsmmE,(x)L_r 9 7
xt : aga[j — L | f R
— +
Feot=

Cassifer G(E(x')

&

Deep Reconstruction Classification Network (DRCN), Ghifary etal, ECCV’'16
> alternates between source label prediction and target data reconstruction
Domain Separation Networks (DSN), Bousmalis etal, NIPS’16
> shared and domain specific encodings and one shared decoding

CNN  ADDA DeepCoral MCDDA DeepJDOT CoGAN DupGAN DRCN  DSN
86.8 89.4 89.33 94.2 955 95.6 96 91.8 95
/E5) 90.1 OS] 94.1 96.4 9312 98.8 Jeky | S
68.1 76 59.6 96.2 96.7 925, 82 82.7

I
SVHN e i1

@2018 NAVER LABS. All rights reserved.



Curriculum learning

Learning Transferable Representations (LTR), Sener etal, NIPS’16

> jointly optimizing representation, domain transformation and label inference
Associative Domain Adaptation (ADA), Haeusser etal, ICCV'17

> reinforcing label associations between domains in the embedding space
Asymmetric Tri-training (ATriDA) etal, PMLR’17

> leverages three classifiers trained simultaneously with real and pseudo-labels
Mixture of Alignments of Scatter Tensors (MAST), Koniusz etal, CVPR’17

> aligns higher-order scatter statistics between source and target domains
Self-ensembling for visual domain adaptation, (SelfEns) French etal, ICLR’18

> exponential moving average of the student network weights
Similarity Learning Network (SimNet), Pinheiro, CVPR’18

> learns domain-invariant features and categorical prototype representations jointly

L Deep)DOT CoGAN DupGAN SelfEns  SimNet ADA] ffice31 CDAN  Adial LTR ]
SPS->MNIST  96.4 93.2 98.8 98.1 95.6 97.6 lexNet  76.9 77.1 80.4

@2018 NAVER LABS. All rights reserved.
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To summarize

Discriminative models
> they are easy to train, straightforward and popular approaches
> minimizing joint feature/label distributions is better (DeepJDOT, JAN)
> best is to combine them with adversarial learning (MCDAA, CDAN)
> per layer based adaptation can bring further improvements

Generative and reconstruction models
> mainly tested on classes with relatively low intra-class variation (digits)
> they outperform the discriminative models (except DeepdDOT) on these data
> best GANs (DupGAN) and best reconstruction (DSN) performs on par

Exploiting pseudo labels
> these methods works in general pretty well
» LTR seems to have the highest gain

@2018 NAVER LABS. All rights reserved. 36



However !

The above observations are far from being conclusive

>

vVvyVvYyYVvyy

the results come from various papers

for the same method results may vary (I took the best)
only few methods were compared on the same datasets
the methods often used different deep architectures

the used datasets are small and not challenging enough
not clear how the parameters of each model was tuned !!

@2018 NAVER LABS. All rights reserved.
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How to tune the parameters of DA models?

Prohibited:
> tuning the model based on the test results
> using at any time target labels, even with cross validation

Possible, but not always optimal:
> tuning based on the results obtained on the source
> using the model with fixed parameters for all the experiments
> consider reverse cross-validation, Ganin etal, JMLR’16

Preferred, but not always obvious:
> using measures nor requiring target labels (distribution divergence)
> using a validation domain similar but not the same as target

@2018 NAVER LABS. All rights reserved. 38



What we need?

More DA challenges and Leader-boards
» VisDa 2017 and 2018 Challenges, with continuous leaderboard on CodalLab

Visual Classification Open Set Classification

Real Target (Validation) pmmmmmmm s ——
[ e i) 4
| aeroplane” “bicycle”
e AL
|l | 3 3O
|

More challenging datasets:
> OpenMIC , Koniusz, EccV’'18, CMPlaces , Castrejon, CVPR'16

MIC Open CMPlaces

BLUESENaEES2097
REROOCEACESITY
PRGN RS R ™R

V2 O T N e L PR
E TR AL B E ¥R

@2018 NAVER LABS. All rights reserved.

39



5. Beyond image classification

@2018 NAVER LABS. All rights reserved.
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Beyond image classification

Casting the problem as classification
> video concept detection: Yang etal, ICCV’'13
> activity recognition: FarajiDavar etal, BMVC’12, Zhu etal, BMVC'13
> 3D pose estimation: Yamada etal, ECCV'12

Data augmentation and synthetic data
> pose estimation, Shotton etal, CVPR’11, Su etal, ICCV’'15
> detection: Pepik etal, CVPR’12, Peng etal, ICCV’'15
> segmentation: Ros etal, CVPR’16, Satkin etal, BMVC'12
> tracking: Gaidon etal, CVPR’16, Vazquez etal, PAMI'14
> actions recognition, De Souza etal, CVPR’17

Model adaptation between domains
> adapting or designing deep models for various tasks

@2018 NAVER LABS. All rights reserved.
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Semantic segm

Curriculum learning based

> Curriculum domain adaptation, Zhang, etal, ICCV’'17
> Class-Balanced Self-Training, Zou, etal, ECCV’'17

building | wall
terrain per rider c truck

Labels (GTA'5)

N
Source Deep
Domain fe) Before Adaptation
— Images (Cityscapes)  Pseudo Labels (Cityscapes)
Target
Domain
Imeges GTA5) .
Predictions (Cityscapes) After Adaptation

Main idea: start from easier tasks, and then refine relying on predicted labels

@2018 NAVER LABS. All rights reserved.
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Semantic segmentation -2-

GAN based image transformation

> Cycle-consistent adaptation framework (CYCADA), Hoffman etal, CORR’18
> Learning from Synthetic Data, Sankaranarayanan etal, CVPR’18
> Representation Adaptation Networks (RAN), Zhang etal., CORR'18

Source Label
Task @
loss

[4

Source Image Source Image Stylized as Target Target Image

Reconstructed Source Image
S,

Source Prediction

Main idea: style transfer in general from synthetic to real images
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Semantic segmentation -3-

GAN integrated into the segmentation framework

» FCN in wild, Hoffman etal, CORR’17

> Adapt Structured Output, Tsai etal, CORR’18

> Conservative Loss, Zhu etal, CORR’18

» Semi-Supervised Semantic Segmentation, Hung etal, CORR’18
> Conditional Generative Adversarial Network, Hong etal, CVPR’18

Segmentation Network Domain Adaptation Module
Source Prediction \
Ao — ) 4 \
4 ¥ L
| T\ H > Lseg
|\ )
Source Domain I\ 7 Source
1 | g Output /
/[ e W
Shared "’
DA DA| ;  Discriminator Network
e~ \\ 3@
Ou q, ut L]:
adv
—» \
mm ”/
Target Domain /
c v

Main idea: forcing target features to resemble to source features
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Object detection

CNNs pre-trained with image level annotations
» combined with region proposals, Oquab etal., CVPR’14, Girshick etal., CVPR' 14
> learns to transform the classifier into object detector, Hoffman et al, NIPS’14

Style-transfered with CycleGAN
> Fine-tune the model on transformed images, Inoue etal, CVPR’18

Adapting the CNN based object detectors
> Align R-CNN features with SA, Raj etal, BMVC’'15
> Minimize MMD between image level features features, Chanda etal, BMVC'17
> Gradient reverse layer both at image and at instance level, Chen etal, CVPR’18

Instance-level
adaptation

@2018 NAVER LABS. All rights reserved.
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And several other tasks

Person Re-ID
> Person Transfer GAN, Wei, etal, CVPR'18
> Pose Transferrable Person Re-Identification, Liu etal, CVPR’18
> Camera Style Adaptation, Zhonget al, CVPR’18
> Learning from rendered 3D humans, Bak etal, ECCV’'18

Action recognition
> 3D Body Skeletons via Kernel Feature Maps, Yusuf and Koniusz, BMvC’'18

Depth estimation
» AdaDepth, Kundu etal, CVPR’18

3D keypoint estimation
> Regression and view consistency loss, Zhou etal, ECCV’18

Autonomous vehicle control command
» Real-to-Virtual Domain Unification, Yang, etal, ECCV’'18

@2018 NAVER LABS. All rights reserved.
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Recent Book on Domain Adaptation

o Domain Adaptation in
main Computer Vision Applications

Adaptation
in Computer Editors: Csurka, Gabriela (Ed.)
\iaian

1 Free >
Preview

v

Introductory part
® a comprehensive survey and a deeper look at dataset bias
> Part I: Shallow Domain Adaptation Methods
® GFK, SA, TCA, DME, ATTM, MSDA
> Part lI: Deep Domain Adaptation Methods
® deepCoral, DANN, Deep Transfer Across Domains and Tasks

v

Part Il: Beyond Image Classification

® Segmentation, object and object part detection, re-identification
> Beyond Domain Adaptation: Unifying Perspectives
® domain generalization, multi-domain multi-task learning
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