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Image Classification
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Domain Shift
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Domain adaptation (DA)

Leveraging labeled data in one or more related domains, referred to as source
domains, to learn a classifier for data in a target domain.

I Unsupervised (US) DA when no label is available in the target domain
I Semi-supervised (SS) DA when a few labels are available in the target domain
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Example scenarios
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Key idea: solve the distribution mismatch

By finding feature representation/embedding where the distributions between source
and target match.

The distribution mismatch, is measured by the Maximum Mean Discrepancy1 (MMD):

MMD(S,T ) =
∥∥∥ 1

Ns

Ns∑
i=1

ψ(xs
i )−
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Nt∑
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ψ(xt
j )
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H

in the Reproducing Kernel Hilbert Space (RKHS).

1Borgwardt et al., Integrating structured biological data by kernel maximum mean discrepancy, Bioinformatics (22), 2006.
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Shallow Domain Adaptation Methods
I Instance re-weighting

• Correcting the sample bias, Dudik et al., NIPS’05, Sugiyama et al., NIPS’07
• Transfer Adaptive Boosting, Dai et al., ICML’07, Al-Stouhi et al., PKDD’11

I Parameter adaptation
• Adjust SVM parameters, Yang et al., MM’07, Bruzzone et al., PAMI’10
• Multiple Kernel Learning, Duan et al., CVPR’10

I Feature augmentation methods
• Frustratingly easy feature augmentation, Daume et al., CORR’09
• Geodesic Flow Sampling (GFS), Gopalan et al., ICCV’11
• Geodesic Flow Kernel, (GFK), Gong et al., CVPR’12

I Feature space alignment
• Subspace Alignment (SA), Fernando et al., ICCV’13
• Correlation Alignment (CORAL), by Sun et al., AAAI’15

I Feature space transformation
• Unsupervised and supervised (most popular, see next)
• Local transformation, FarajiDavar et al., BMVC’14, Courty et al., CORR’15

I Heterogeneous feature transformation
• Dictionary Learning, Shekhar et al., CVPR’13
• Heterogeneous Spectral Mapping, Shi et al., ICDM’10
• Domain Adaptation Manifold Alignment, Wang et al., IJCAI’11
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Feature space transformation

Learning a common feature projection φ by minimizing the distributions mismatch.

Image: Courtesy to Dong Xu.

Unsupervised feature transformation
I learns the transformation without using any class labels

Supervised feature transformation
I exploits class labels only from source (US scenario)
I exploits class labels from both source and target (SS scenario)
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US feature transformation methods

I Transfer Component Analysis (TCA), Pan et al., IJCAI’09

• minimizes the distance between source and target means in the subspace

I Marginalized Denoising Autoencoders (MDA), Chen et al., ICML’12

• reconstructs original features from their noised counterparts

I Domain Invariant Projection (DIP), Baktashmotlagh et al., ICCV’13

• compares directly the distributions in the RKHS

I Transfer Sparse Coding (TSC), Long et al., CVPR’13

• learns robust sparse representations

I Statistically Invariant Embedding (SIE), Baktashmotlagh et al., CVPR’14

• minimizes the Hellinger distance on a Riemannian manifold

I Transfer Joint Matching (TJM), Long et al., CVPR’14

• combines MMD minimization and instance re-weighting
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US results on the Office-Caltech dataset

SA - Subspace Alignment, Fernando et al., ICCV’13
CORAL - Correlation Alignment, Sun AAAI’15
GFK - Geodesic Flow Kernel, B. Gong et al., CVPR’12
TCA - Transfer Component Analysis, Pan et al., IJCAI’09
SIE - Statistically Invariant Embedding, Baktashmotlagh et al., CVPR’14
JDA - Joint Distribution Adaptation, Long et al., ICCV’14
TJM - Transfer Joint Matching, Long et al., CVPR’14
ATTM - Adaptive Transductive Transfer Machines, Farajidavar et al., BMVC’14
MDA - Marginalized Denoising Autoencoders, Chen et al., ICML’12
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Feature Space Alignment: SA and CORAL

Subspace Alignment (SA)

Learns an alignment M between the PCA
subspaces Xs and Xt of the source and
target space respectively:

M∗ = argmin‖XsM− Xt‖

Correlation Alignment (CORAL)

The main idea is a ”whitening” of the
source data using its covariance Cs
followed by a ”re-coloring” using the
target covariance matrix Ct :

Xs ∗ C−1/2
s ∗ C−1/2

t
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Marginalized Denoising Autoencoders2

MDA

Using drop-out noise and
marginalizing out the corruption
yields closed form solution for W,
which depends only on the data
covariance and the drop-out
noise level.

Stacked MDA

Can be easily made ”deep”, by
stacking several MDA layers.
Nonlinearities between layers
and concatenation of several
layers improves the results.

2Chen et al., Marginalized Stacked Denoising Autoencoders for Domain Adaptation, ICML’12
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Supervised feature transformation methods

Exploit class labels from source and when available from target.

I Max-Margin Domain Transform (MMDT), Hoffman et al., ICLR’13

• optimizes jointly the transformation and classifier

I Joint Distribution Adaptation (JDA), Long et al., ICCV’13

• adapts both the marginal and the conditional distribution between domains

I Adaptation Regularization based TL (ARTL), Long et al., TDKE’14

• combines structural risk, manifold consistency and discrepancy loss

I Joint Distribution Optimal Transport (JDOT), Courty, et al., NIPS’17

• minimizes an optimal transport between joint distributions

Extensions proposed for unsupervised feature transformation methods:
I Semi-supervised Transfer Component Analysis (SSTCA), Pan et al., TNN’11
I Domain Invariant Projection (DIP-CC), Baktashmotlagh et al., ICCV’13
I Regularized Domain Instance Denoising (eMDA), Csurka et al., TASK-CV’16
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Metric Learning (ML) based DA methods

Exploit class labels from both source and target.

I Regularized Distance Metric Learning (R-DML), Zha et al., IJCAI’09

• uses either Log-determinant or Manifold regularization

I Information-Theoretic Metric Learning (ITML), Saenko et al., ECCV’10

• uses Information-Theoretic Metric to learn a distance across domains

I Bayes Nearest Neighbor based DA (NBNN-DA), Tommasi et al., ICCV’13

• combines Naive Bayes Nearest Neighbor sample selection with ITML

I Domain Specific Class Means (MLDSCM), Csurka et al., TASK-CV’14
• minimizing soft-max distances to domain specific class means
• can take advantage of multiple sources
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SS results on Office-Caltech dataset

• GFK - Geodesic Flow Kernel, B. Gong et al., CVPR’12
• SA - Subspace Alignment, Fernando et al., ICCV’13
• MMDT - Max-Margin Domain Transforms, Hoffman et al., ICLR’13
• SSTCA - Semi-Supervised TCA, Pan et al., TNN’11
• ITML - Information Theoretic Metric Learning, Saenko et al., ECCV’10
• MLDSCM - ML for Domain Specific Class Means, Csurka et al., TASK-CV’14
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Domain Specific Class Means3 (DSCM)

DSCM

Easily handles multiple domains d ,
where xi is assigned to the class for
which the weighted soft-max
distances to the corresponding
domain specific class means (µd

i ) is
minimal.

MLDSCM

Learns a transformation W
minimizing the weighted soft-max
distances for each instance:

p(c|xi ) =

∑
d wd e(−

1
2 ‖Wxi−Wµd

c ‖)∑
c′

∑
d wd e

(− 1
2 ‖Wxi−Wµd

c′
‖)

3Csurka et al., Domain adaptation with a domain specific class means classifier. TASK-CV’14
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To summarize

Early methods require labeled target examples
I e.g. instance re-weighting, parameter adaptation,
I hence, can be applied only to semi-supervised DA scenario

Simple methods can performs pretty well
I e.g. Subspace Alignment, Correlation Alignment, MDA
I they have no/few parameters or closed form solutions

Feature space transformation are the most popular ones
I many of them relies on the Maximum Mean Discrepancy (MMD)
I can be unsupervised or supervised exploiting labels
I optimizing conditional or joint distributions helps

Best performing methods
I e.g. Transfer Joint Matching, Adaptive Transductive Transfer Machines
I joint marginal and conditional distributions and instance re-weighting
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DA using Deep Learning

I Shallow methods using deep features
• use the deep model as feature extractor
• apply any shallow DA method using these features

I Using fine-tuned deep architectures
• fine-tune the deep model on the source
• apply the fine-tuned model on the target

I Shallow methods using fine-tuned deep features
• fine-tune the deep model on the source
• use the fine-tuned model as feature extractor
• apply any shallow DA method using these features

I Deep DA models
• deep Siamese architectures built for domain adaptation
• the streams, corresponding to source and target, are initialized with a deep

model fine-tuned on the source
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Shallow methods using deep features
Deep models used as feature extractors4

I Activations of the deep CNN model can be used as image representation.
I Popular models are: AlexNet, VGG, ResNet or GoogleNet.
I Best candidates are layers preceding the softmax layer (fc6, fc7, PreLogit).

I Using deep features in shallow methods allows a gain above 20%.
I These features being more abstract decreases the domain bias.

4Donuahe et al., DeCAF: A deep convolutional activation feature for generic visual recognition, ICML’14.
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Fine-tuning the model on the source
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Fine-tuning on the LandmarkDA5 dataset

5https://www.researchgate.net/publication/319208011_LandMarkDA_domain_adaptation_dataset.
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Discrepancy based DAN

Joint distribution discrepancy6 (JDD):

LJDD =

∥∥∥∥∥∥ 1
Ns

Ns∑
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φ(Xs
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,

6Long et al., Deep Transfer Learning with Joint Adaptation Networks, CORR’15
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Shallow Adaptation Network (SDAN)

Joint distribution discrepancy7 (JDD):

LJDD =

∥∥∥∥∥∥ 1
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7Long et al., Deep Transfer Learning with Joint Adaptation Networks, CORR’15

@2018 NAVER LABS. All rights reserved. 26



SDAN results

Findings:
I SDAN allows for significant improvement over training only on the source.

I JDD results show the importance of considering the prediction layer (Ŷ).
I BL with GoogleNet or RestNet features can be better that SDAN obtained with

AlexNet or VGG features.
I On Office31, GoogleNet BL is better than any SOA method built on AlexNet

(best 80.4% with LRT, Sener et al., NIPS’16)

Always compare methods built on the same original architectures and shallow
methods using features extracted from the same deep model!
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Deep DA model versus deep features

Findings:
I If the domain shift is small (D↔W), almost no gain is obtained with adaptation.
I Fine-tuning the deep model on the source outperforms the shallow model.
I If the target (A,Ph) is closer to the initial domain (ImageNet) than the source

(W,D,Pt,Dr), fine tuning on the source seems sufficient. In the opposite case,
adaptation yields strong improvements.

I Shallow methods using fine-tuned model deep features is close to best.
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To summarize

Main advantages of shallow methods
I they are simple and low cost solutions
I same architecture can be applied to any vectorial representation
I it is important to use strong representations (deep features)

Main advantages of deep methods
I they can adjust the feature representation to the problem
I if appropriately trained they often outperform the shallow methods

Shallow methods using fine-tuned deep features
I combines the strength of deep learning and domain adaptation
I close to results obtained with the corresponding deep architecture
I no need to build DA dedicated (Siamese) deep architectures
I it requires less computational cost, easier to deploy on mobile phone
I the fine-tuning can be done in advance, before seeing the target
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Discriminative models

Main framework

• Siamese architecture
• pre-trained on the source
• cross-entropy on source
• discrepancy and/or

adversarial losses

Minimizing the feature discrepancy
I DAN, Long et al., ICML’15, DeepCORAL, Sun et al., TASK-CV’16

Minimizing the joint feature/label distributions
I DeepJDOT, Damodaran et al., ECCV’16, JAN, Long et al., ICML’17

Encouraging domain confusion (adversarial)
I DANN, Ganin et al., JMLR’16, ADDA, Tzeng et al., CVPR’17

Combine discrepancy minimization with adversarial learning
I MCDDA, Saito, et al., CVPR’18, CDAN, Long et al., NIPS’18
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Per layer based adaptations

Automatic Domain Alignment Layers (ADial) Carlucci et al., ICCV’17
I designed to match the source and target feature distributions to a reference one

Collaborative and Adversarial Network, (CAN), Zhang et al., CVPR’18
I to learn simultaneously domain-informative and uninformative features

Residual Parameter Transfer, (RPT) Rozantsev et al., CVPR’18
I used to learn the parameter adaptation between source and target layers

@2018 NAVER LABS. All rights reserved. 32



Generative models

Coupled Generative Adversarial Networks (CoGAN), Liu et al., NIPS’16
I couples two GANs, each corresponding to one of the domains

Pixel-Level Domain Adaptation (PixelDA), Bousmalis et al., CVPR’17
I adapts source images to appear as if drawn from the target domain

Domain Transfer Network (DTN), Taigman, et al., ICLR’17
I relies on cross-domain image translation

Aligning Domains using GAN, (ADGAN), Sankaranarayanan et al., CVPR’18
I combines joint feature learning with adversarial image generation

Duplex Generative Adversarial Network (DupGAN), Hu et al., CVPR’18
I uses a duplex discriminator, one for each domain

@2018 NAVER LABS. All rights reserved. 33



Auto-encoder based models

Deep Reconstruction Classification Network (DRCN), Ghifary et al., ECCV’16
I alternates between source label prediction and target data reconstruction

Domain Separation Networks (DSN), Bousmalis et al., NIPS’16
I shared and domain specific encodings and one shared decoding
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Curriculum learning

Learning Transferable Representations (LTR), Sener et al., NIPS’16
I jointly optimizing representation, domain transformation and label inference

Associative Domain Adaptation (ADA), Haeusser et al., ICCV’17
I reinforcing label associations between domains in the embedding space

Asymmetric Tri-training (ATriDA) et al., PMLR’17
I leverages three classifiers trained simultaneously with real and pseudo-labels

Mixture of Alignments of Scatter Tensors (MAST), Koniusz et al., CVPR’17
I aligns higher-order scatter statistics between source and target domains

Self-ensembling for visual domain adaptation, (SelfEns) French et al., ICLR’18
I exponential moving average of the student network weights

Similarity Learning Network (SimNet), Pinheiro, CVPR’18
I learns domain-invariant features and categorical prototype representations jointly
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To summarize

Discriminative models
I they are easy to train, straightforward and popular approaches
I minimizing joint feature/label distributions is better (DeepJDOT, JAN)
I best is to combine them with adversarial learning (MCDAA, CDAN)
I per layer based adaptation can bring further improvements

Generative and reconstruction models
I mainly tested on classes with relatively low intra-class variation (digits)
I they outperform the discriminative models (except DeepJDOT) on these data
I best GANs (DupGAN) and best reconstruction (DSN) performs on par

Exploiting pseudo labels
I these methods works in general pretty well
I LTR seems to have the highest gain
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However !

The above observations are far from being conclusive

I the results come from various papers
I for the same method results may vary (I took the best)
I only few methods were compared on the same datasets
I the methods often used different deep architectures
I the used datasets are small and not challenging enough
I not clear how the parameters of each model was tuned !!
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How to tune the parameters of DA models?

Prohibited:
I tuning the model based on the test results
I using at any time target labels, even with cross validation

Possible, but not always optimal:
I tuning based on the results obtained on the source
I using the model with fixed parameters for all the experiments
I consider reverse cross-validation, Ganin et al., JMLR’16

Preferred, but not always obvious:
I using measures nor requiring target labels (distribution divergence)
I using a validation domain similar but not the same as target
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What we need?
More DA challenges and Leader-boards

I VisDa 2017 and 2018 Challenges, with continuous leaderboard on CodaLab

More challenging datasets:
I OpenMIC , Koniusz, ECCV’18, CMPlaces , Castrejón, CVPR’16
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Beyond image classification

Casting the problem as classification
I video concept detection: Yang et al., ICCV’13
I activity recognition: FarajiDavar et al., BMVC’12, Zhu et al., BMVC’13
I 3D pose estimation: Yamada et al., ECCV’12

Data augmentation and synthetic data
I pose estimation, Shotton et al., CVPR’11, Su et al., ICCV’15
I detection: Pepik et al., CVPR’12, Peng et al., ICCV’15
I segmentation: Ros et al., CVPR’16, Satkin et al., BMVC’12
I tracking: Gaidon et al., CVPR’16, Vazquez et al., PAMI’14
I actions recognition, De Souza et al., CVPR’17

Model adaptation between domains
I adapting or designing deep models for various tasks
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Semantic segmentation -1-

Curriculum learning based

I Curriculum domain adaptation, Zhang, et al., ICCV’17
I Class-Balanced Self-Training, Zou, et al., ECCV’17

Main idea: start from easier tasks, and then refine relying on predicted labels
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Semantic segmentation -2-

GAN based image transformation

I Cycle-consistent adaptation framework (CYCADA), Hoffman et al., CORR’18
I Learning from Synthetic Data, Sankaranarayanan et al., CVPR’18
I Representation Adaptation Networks (RAN), Zhang et al., CORR’18

Main idea: style transfer in general from synthetic to real images

@2018 NAVER LABS. All rights reserved. 43



Semantic segmentation -3-
GAN integrated into the segmentation framework

I FCN in wild, Hoffman et al., CORR’17
I Adapt Structured Output, Tsai et al., CORR’18
I Conservative Loss, Zhu et al., CORR’18
I Semi-Supervised Semantic Segmentation, Hung et al., CORR’18
I Conditional Generative Adversarial Network, Hong et al., CVPR’18

Main idea: forcing target features to resemble to source features
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Object detection
CNNs pre-trained with image level annotations

I combined with region proposals, Oquab et al., CVPR’14, Girshick et al., CVPR’14
I learns to transform the classifier into object detector, Hoffman et al., NIPS’14

Style-transfered with CycleGAN
I Fine-tune the model on transformed images, Inoue et al., CVPR’18

Adapting the CNN based object detectors
I Align R-CNN features with SA, Raj et al., BMVC’15
I Minimize MMD between image level features features, Chanda et al., BMVC’17
I Gradient reverse layer both at image and at instance level, Chen et al., CVPR’18
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And several other tasks

Person Re-ID
I Person Transfer GAN, Wei, et al., CVPR’18
I Pose Transferrable Person Re-Identification, Liu et al., CVPR’18
I Camera Style Adaptation, Zhonget al., CVPR’18
I Learning from rendered 3D humans, Bak et al., ECCV’18

Action recognition
I 3D Body Skeletons via Kernel Feature Maps, Yusuf and Koniusz, BMVC’18

Depth estimation
I AdaDepth, Kundu et al., CVPR’18

3D keypoint estimation
I Regression and view consistency loss, Zhou et al., ECCV’18

Autonomous vehicle control command
I Real-to-Virtual Domain Unification, Yang, et al., ECCV’18
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Recent Book on Domain Adaptation

I Introductory part
• a comprehensive survey and a deeper look at dataset bias

I Part I: Shallow Domain Adaptation Methods
• GFK, SA, TCA, DME, ATTM, MSDA

I Part II: Deep Domain Adaptation Methods
• deepCoral, DANN, Deep Transfer Across Domains and Tasks

I Part II: Beyond Image Classification
• Segmentation, object and object part detection, re-identification

I Beyond Domain Adaptation: Unifying Perspectives
• domain generalization, multi-domain multi-task learning
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