

Unsupervised Feature Adaptation for Image Retrieval via Diffusion Process

Lei Wang

School of Computing and Information Technology University of Wollongong, Australia 02-Dec-2018

Outline

- Content-based Image Retrieval
- A Domain Adaptation Perspective
- Feature Adaptation for CBIR
 - Diffusion Process in image retrieval
 - A kernel mapping view of diffusion
 - Feature Adaptation by modeling diffusion process
- Conclusion

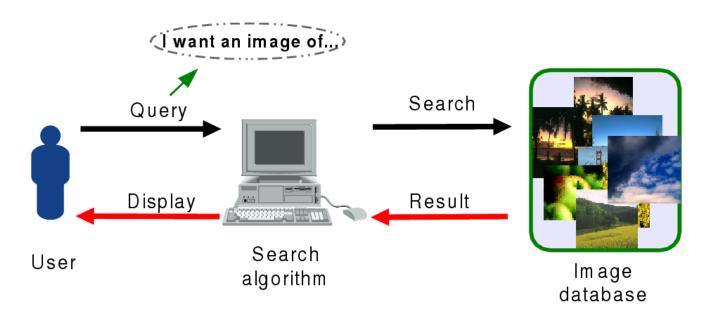
Images courtesy of related papers and authors

• Retrieval

- Getting back information that has been stored in a

database

• Image Retrieval



Introduction

- Content-based image retrieval
 - Human annotators are replaced by computers
 - Text annotations are replaced by visual features
 - Retrieval by the similarity of associated visual features

Drouin Post Office, front desks

Iron Ore

Fashion

Introduction

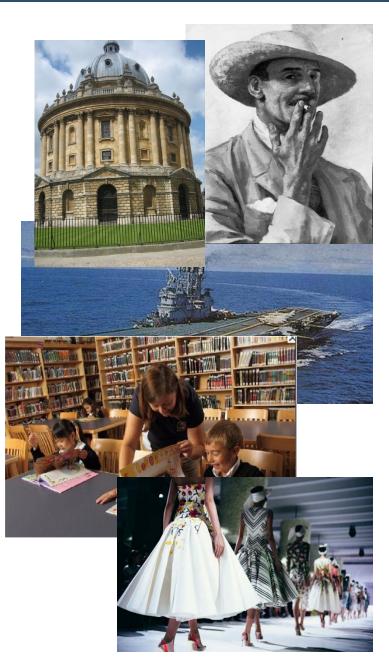
Image retrieval on the collection of National Archives of Australia

Query:

Retrieval result

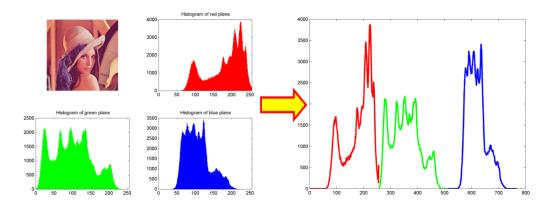
Introduction

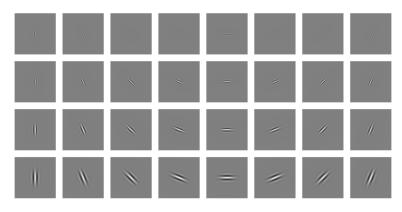
- Applications of CBIR
 - Scene understanding
 - Online shopping
 - Photo collection management
 - Crime investigation
 - Fashion and design
 - Localisation and navigation
 - Medical Image analysis



CBIR: Early days

- Hand-crafted features
 - Color, texture, shape, structure, etc.
 - Goal: "Invariant and discriminative"
- Similarity or distance measure
 - Euclidean distance, Manhattan distance, etc.
 - Specially designed measures





Local Invariant Features

- SIFT, HOG, SURF, CENTRIST, filter-based, ...
 - Invariant to view angle, rotation, scale, illumination, ...

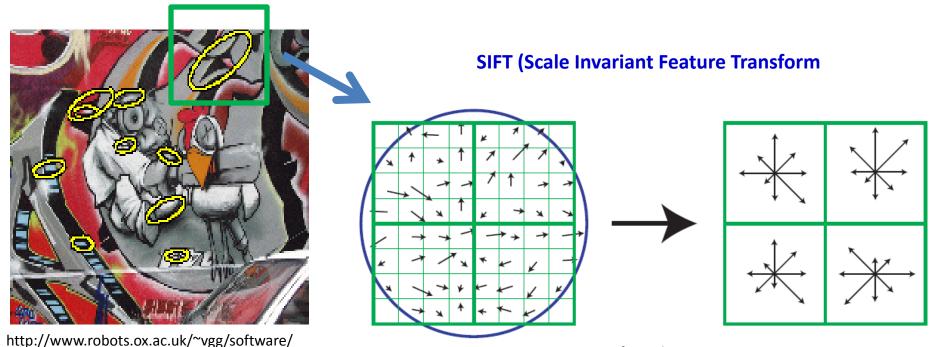
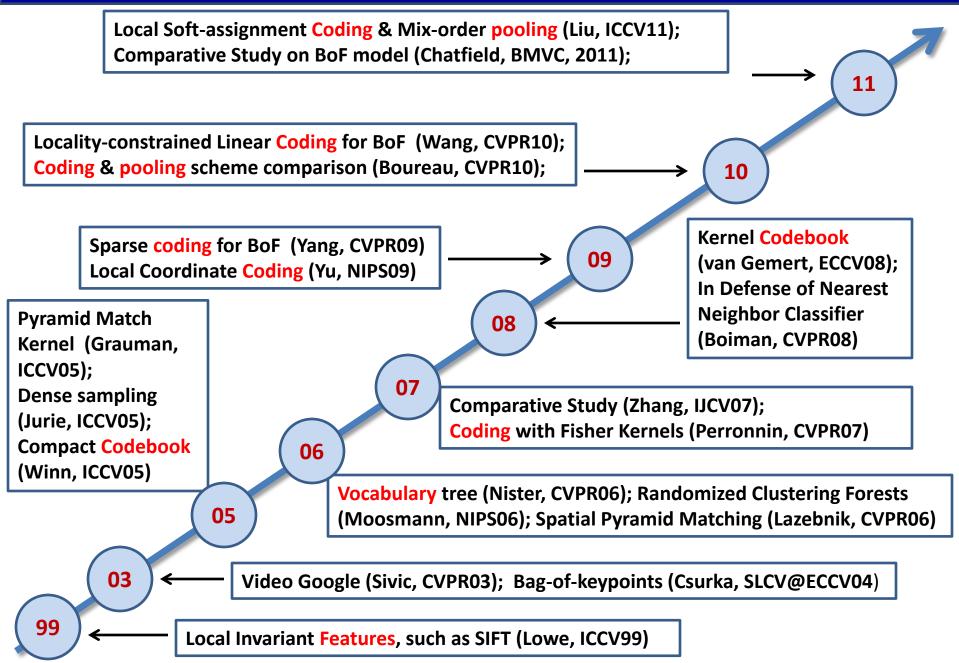
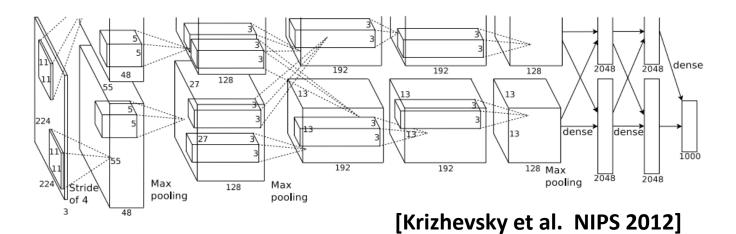


Image courtesy of David Lowe, IJCV04

CBIR: Days of the BoF model



CNNs: ImageNet Breakthrough



- Krizhevsky et al. win 2012 ImageNet classification with a **much bigger ConvNet**
 - deeper: 7 stages vs 3 before
 - larger: 60 million parameters vs 1 million before
 - **16.4%** error (top-5) vs Next best 26.2% error
- This was made possible by:
 - fast hardware: GPU-optimized code
 - **big dataset**: 1.2 million images vs thousands before
 - **better regularization**: dropout et al.

IMAGENEI GENEI CONTRACTOR C

Image courtesy of Deng et al.

Deep Shape Matching (Radenovic, ECCV18); Fast spectral ranking for similarity search (Iscen, CVPR18); Mining on manifolds (Iscen, CVPR18); SIFT meets CNN: A decade survey of instance retrieval (Zheng, TPAMI, 2018),...

CNN Features off-the-shelf (Razavian, CVPRW14); Neural codes (Babenko, ECCV14); Deep ranking (Wang, CVPR14); Multi-scale orderless pooling (Gong, ECCV14); Encoding High Dimensional Local Features (Liu, NIPS14); Survey: Deep learning for CBIR (Wan, ACMMM14); ...

13

12

Efficient diffusion on Region Manifolds (Iscen, CVPR17); Large-Scale Image Retrieval with Attentive Deep Local Features (Noh, ICCV17); Ensemble Diffusion for Retrieval (Bai, ICCV17); ...

> **16** R-MAC (Tolias, ICLR16); CNN IR Learns from BoW (Radenovic, ECCV16); CroW (Kalantidis, ECCVW16); Where to focus (Cao, 2016); NetVLAD (Arandjelovic, CVPR16); ...

17

18

Deep filter banks (Cimpoi, CVPR15); Exploiting Local Features from DNN (Ng, CVPRW15); SPoC (Babenko, ICCV15); MatchNet (Han, CVPR15); ...

Some papers appeared on Arxiv

15

14

Image Classification with DCNN (Krizhevsky, NIPS12)

From hand-crafted features to automatically learned ones

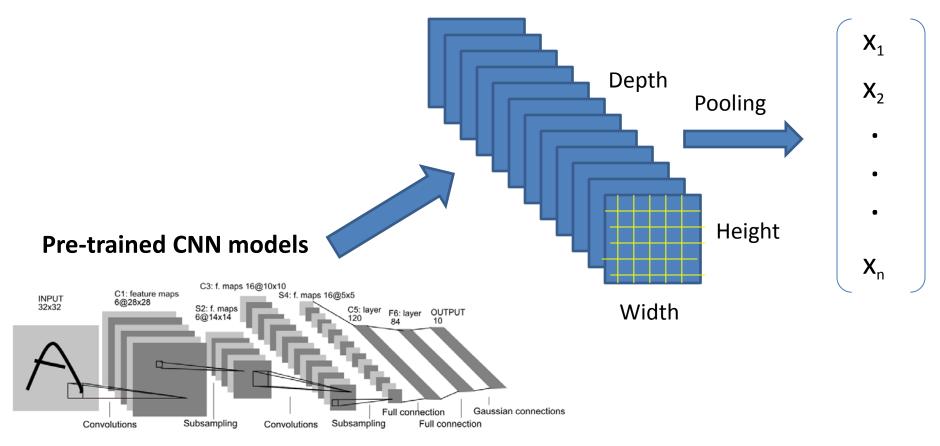
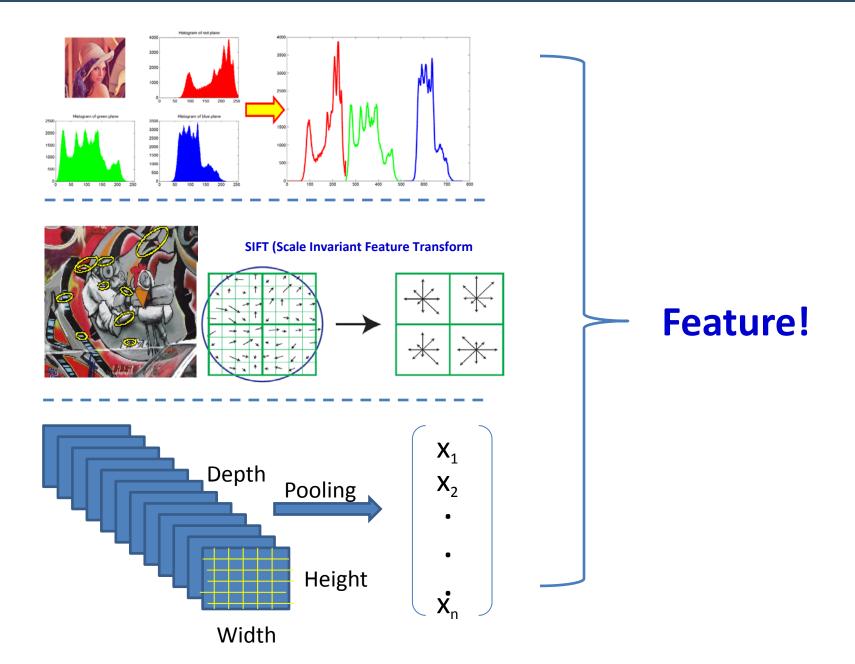


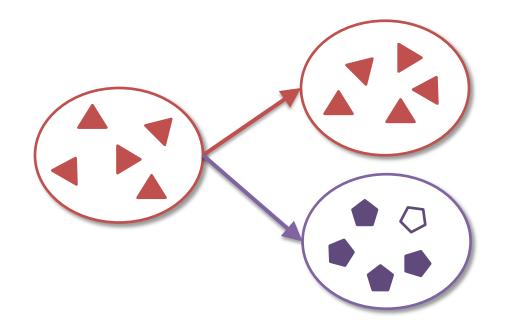
Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.



Outline

- Content-based Image Retrieval
- A Domain Adaptation Perspective
- Feature Adaptation for CBIR
 - Diffusion Process in image retrieval
 - A kernel mapping view of diffusion
 - Feature Adaptation by modeling diffusion process
- Conclusion

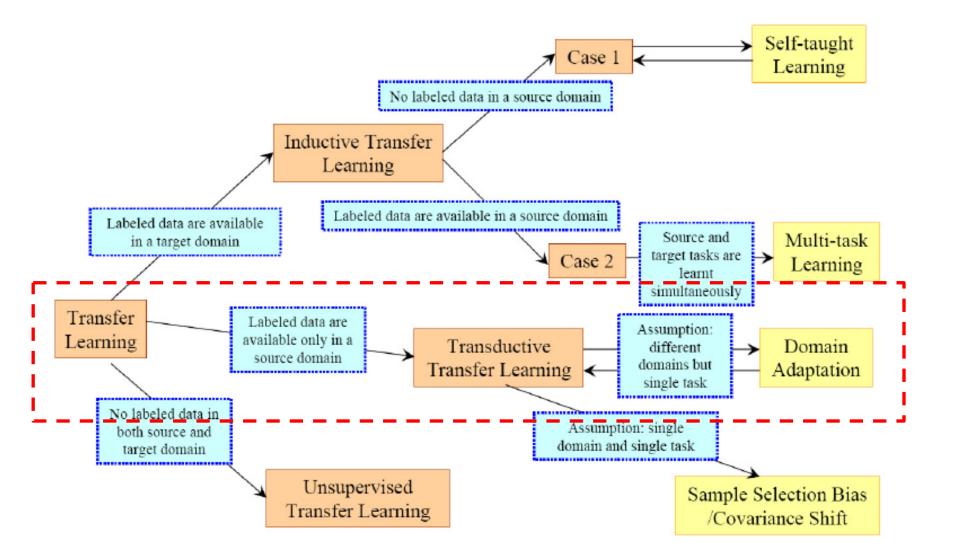
Images courtesy of related papers and authors



Training and test data are from the same domain

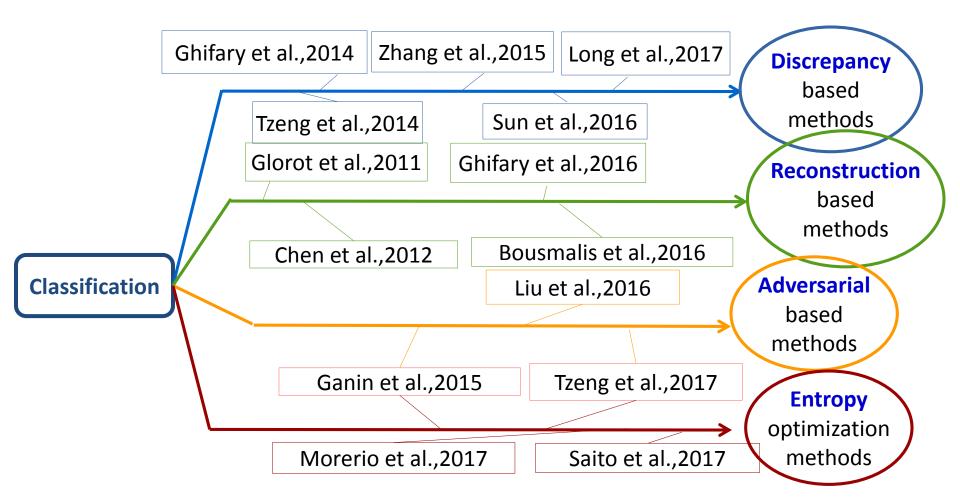
Training and test data are from **different domains**

- **Domain:** Probability distribution in a data space
- **Task:** Classification, regression, clustering, retrieval, etc.
- Aim: Improve target task in the target domain with knowledge from source domain and task



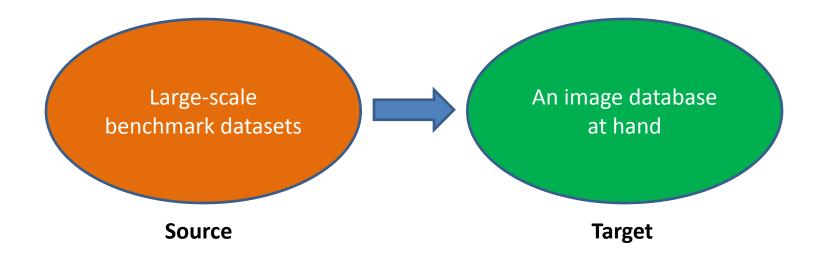
From Sinno Jialin Pan and Qiang Yang. "A survey on transfer learning." IEEE TKDE, 22(10), October 2010, Pages 1345-1359.

- Current research (on image classification)
 - Focus on classification tasks for both source and target



CBIR: A Perspective from Domain Adaptation

- **Domain shift** (p(X) changes)
 - Large-scale benchmark dataset for pre-trained models
 - Image database at hand has a different distribution
- Task shift (p(Y|X) changes)
 - (supervised) classification to (unsupervised) retrieval



CBIR: A Perspective from Domain Adaptation

- Currently, use the CNN feature as it is
- Or, fine-tune CNN network
 - Collecting extra supervision information for the image database
- Domain adaptation is not sufficiently considered

CBIR: A Perspective from Domain Adaptation

- Currently, use the CNN feature as it is
- Or, fine-tune CNN network
 - Collecting extra supervision information for the image database
- Domain adaptation is **not** sufficiently considered

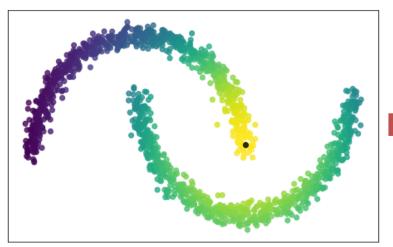
So, can we exploit the intrinsic information of an image database to make CNN features adapted to the database?

Outline

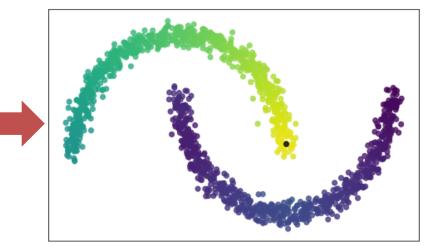
- Content-based Image Retrieval
- A Domain Adaptation Perspective
- Feature Adaptation for CBIR
 - Diffusion Process in image retrieval
 - A kernel mapping view of diffusion
 - Feature Adaptation by modeling diffusion process
- Conclusion

Images courtesy of related papers and authors

- Capture the intrinsic manifold structure of data
- Long been used for image retrieval (*)
 - Better evaluate image similarity
 - Unsupervised learning



Euclidean distance / Cosine similarity

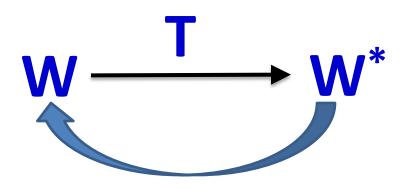


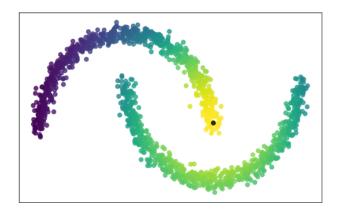
Similarity obtained after diffusion

(*) M. Donoser and H. Bischof, "Diffusion Processes for Retrieval Revisited," 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, 2013, pp. 1320-1327.

Diffusion Process

- Initial affinity matrix W (w₀=A)
 - Similarity between each pair of images
- **Transition matrix T** (of random walk)
 - Probability for walking from one node to another
- Performing diffusion
 - Iteratively update W through T
- New affinity matrix W^{*}
 - Similarity scores





Diffusion Process

Method	Abbr.	Initialization \mathbf{W}^0	Transition \mathbf{T}	Diffusion	
Global PageRank [17]	GPR	u	Р	$\mathbf{f}_{t+1} = \mathbf{f}_t \mathbf{T}$	
Personalized PageRank [17]	PPR	u	Р	$\mathbf{f}_{t+1} = \alpha \mathbf{f}_t \mathbf{T} + (1 - \alpha) \mathbf{y}$	
Ranking on Manifolds [23]	ROM	u	\mathbf{P}_{NC}	$\mathbf{f}_{t+1} = \alpha \mathbf{f}_t \mathbf{T} + (1 - \alpha) \mathbf{y}$	
Label Propagation [24]	LP	y	Р	$\mathbf{f}_{t+1} = \mathbf{f}_t \mathbf{T} \text{ and } f(i) = 1$	
Graph Transduction [2]	GT	y y	Р	$\mathbf{f}_{t+1} = \mathbf{f}_t \mathbf{T}$ and $f(i) = 1$	
Locally Constrained DP [21]	LCDP	A	\mathbf{P}_{kNN}	$\mathbf{W}_{t+1} = \mathbf{T} \mathbf{W}_t \mathbf{T}^T$	
Tensor Graph Diffusion [22]	TGD	A	\mathbf{P}_{DS}	$\mathbf{W}_{t+1} = \mathbf{T} \mathbf{W}_t \mathbf{T}^T + \mathbf{I}$	
Shortest Path Propagation [20]	SPP	y y	\mathbf{P}_{SP}	$\mathbf{f}_{t+1} = \mathbf{f}_t \mathbf{T}$	
Self Smoothing Operator [8]	SSO	A	Р	$\mathbf{W}_{t+1} = \mathbf{W}_t \mathbf{T}$	
Self Diffusion [19]	SD	A	Р	$\mathbf{W}_{t+1} = \mathbf{W}_t \mathbf{T} + \mathbf{I}$	
Replicator Dynamics [18]	RD	u	Α	$\mathbf{f}_{t+1} = \mathbf{f}_t \odot \mathbf{T} \mathbf{f}_t$ and $\mathbf{f}_{t+1} = \mathbf{f}_{t+1} / \mathbf{f}_{t+1} $	
Power Iteration Clustering [11]	PIC	s	Р	$\mathbf{f}_{t+1} = \mathbf{T} \mathbf{f}_t$ and $\mathbf{f}_{t+1} = \mathbf{f}_{t+1} / \mathbf{f}_{t+1} $	
Authority Shift Clustering [3]	ASC	$\mathbf{P}_{\mathrm{PPR}}$	$\mathbf{P}_{\mathrm{PPR}}$	$\mathbf{W}_{t+1} = \mathbf{W}_t \mathbf{T}$	

- Computational efficiency
 - A direct matrix inversion
 - An iterative method
 - Graph sparsification
 - Conjugate gradient (Iscen et al. CVPR2017)

Table from M. Donoser and H. Bischof, "Diffusion Processes for Retrieval Revisited," 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, 2013, pp. 1320-1327.

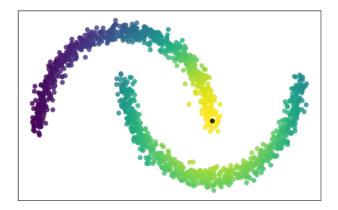
The performance of diffusion-based image retrieval in the recent literature (*)

Method	$m \times d$	INSTRE	Oxf5k	Oxf105k	Par6k	Par106k			
Global descriptors - nearest neighbor search									
CroW [30] [†]	512	-	68.2	63.2	79.8	71.0			
R-MAC [43]	512	47.7	77.7	70.1	84.1	76.8			
R-MAC [19]	2,048	62.6	83.9	80.8	93.8	89.9			
NetVLAD [1] [†]	4,096	-	71.6	-	79.7	-			
Global descriptors - query expansion									
R-MAC [43]+AQE [8]	512	57.3	85.4	79.7	88.4	83.5			
R-MAC [43]+SCSM [48]	512	60.1	85.3	80.5	89.4	84.5			
R-MAC [43]+HN [42]	512	64.7	79.9	-	92.0	-			
Global diffusion	512	70.3	85.7	82.7	94.1	92.5			
R-MAC [19]+AQE [8]	2,048	70.5	89.6	88.3	95.3	92.7			
R-MAC [19]+SCSM [48]	2,048	71.4	89.1	87.3	95.4	92.5			
Global diffusion	2,048	80.5	87.1	87.4	96.5	95.4			

(* Table from Iscen et al., Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations, CVPR2017)

Diffusion Process

- Why bother feature adaptation?
 - From the perspective of domain adaptation
 - The issue of diffusion-based image retrieval
 - Have to maintain a large affinity matrix W
 - Need to **update W** with newly inserted images
 - Need to perform **online** diffusion for retrieval
- After feature adaptation
 - A simple **Euclidean** search
 - No need to store W
 - No need to update (partially)
 - No need online diffusion



Diffusion Process

- Why bother feature adaptation?
 - From the perspective of domain adaptation
 - The issue of diffusion-based image retrieval
 - Have to maintain a large affinity matrix W
 - Need to **update W** with newly inserted images
 - Need to perform **online** diffusion for retrieval
- After feature adaptation
 - An unsupervised learning framework to bootstrap image retrieval
- Two related work
 - Iscen et. al, CVPR18a; Iscen et. al, CVPR18b

Outline

- Content-based Image Retrieval
- A Domain Adaptation Perspective
- Feature Adaptation for CBIR
 - Diffusion Process in image retrieval
 - A kernel mapping view of diffusion
 - Feature Adaptation by modeling diffusion process
- Conclusion

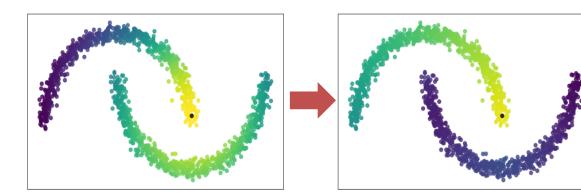
Images courtesy of related papers and authors

Kernel mapping view

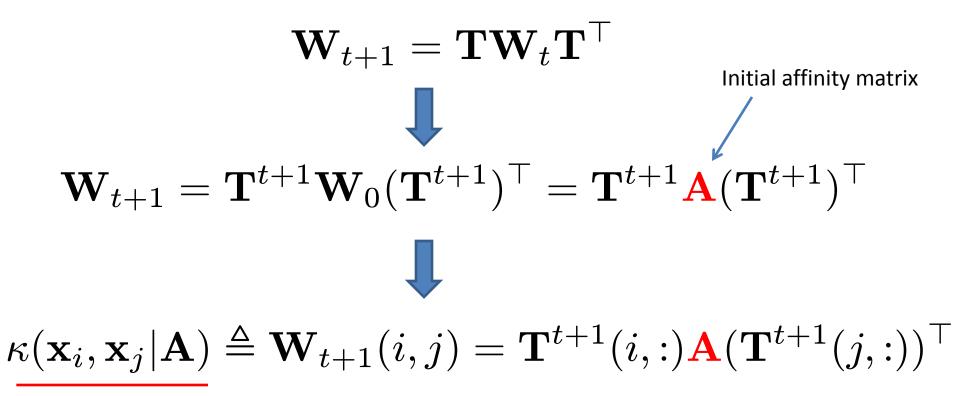
• Feature adaptation is a mapping

 $\mathbf{f} \stackrel{\phi}{\longrightarrow} \mathbf{f}'$

- Conceptually, is there such a ϕ w.r.t. diffusion?
 - Yes, a diffusion process essentially evaluates image similarity with a new kernel
 - $-\phi$: the implicit, nonlinear kernel-induced mapping



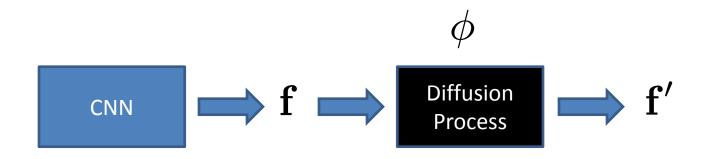
• A typical diffusion scheme (LCDP)



• Diffusion process uses a "context-aware" kernel

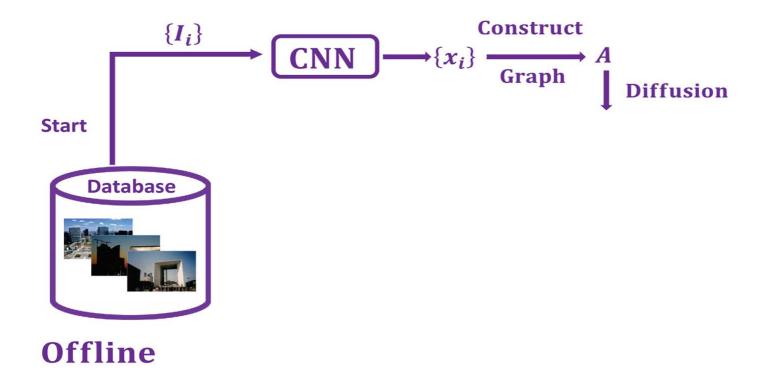
"Modeling" diffusion process

• Learning ϕ by treating diffusion process as a "black box"

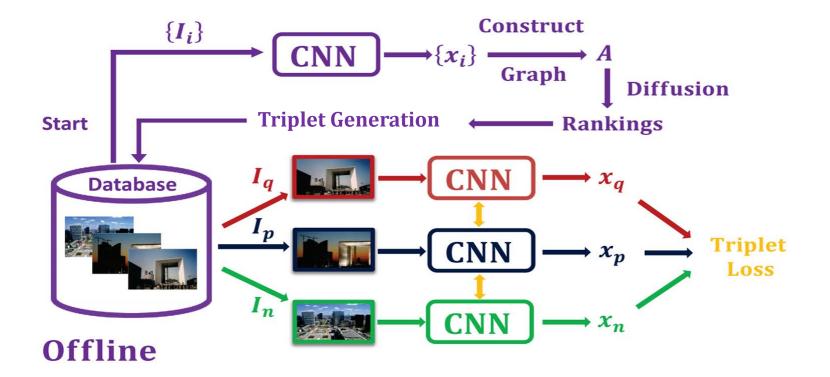


- Implemented by making A approach W^{*}
 - Value-based approximation
 - Inner product or Euclidean distance (scale issue)
 - Rank-based approximation (good for image retrieval)

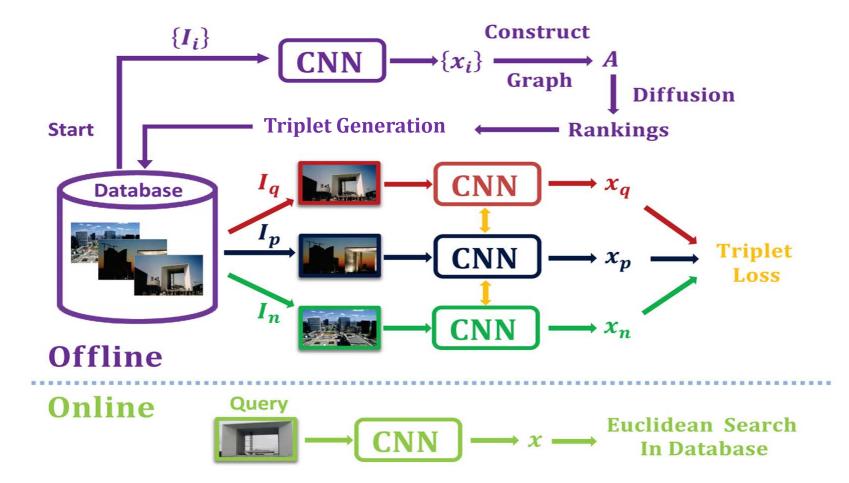
• A deep metric learning approach



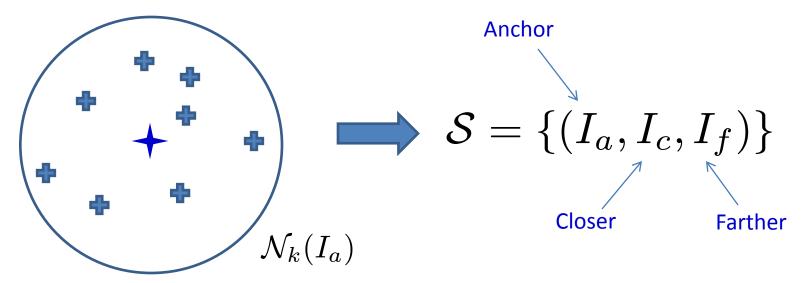
• A deep metric learning approach



• A deep metric learning approach



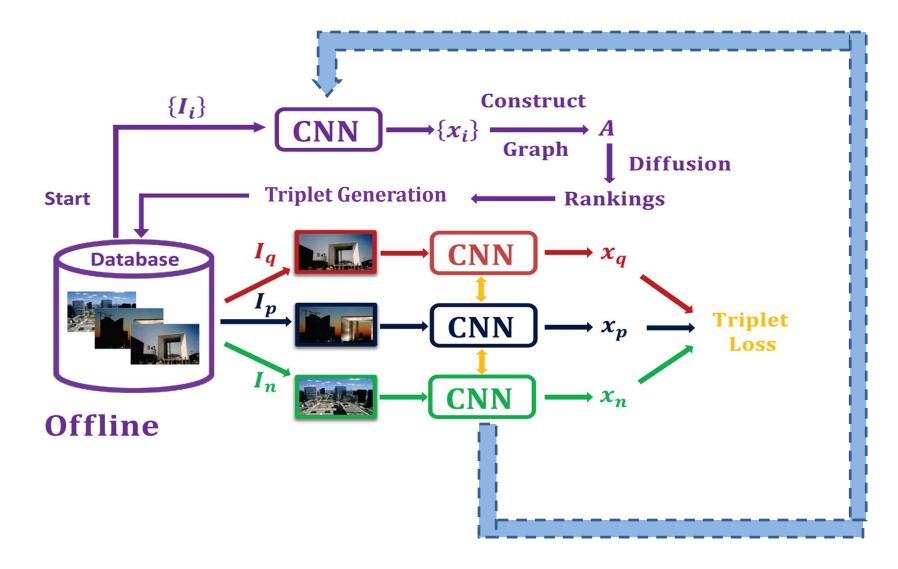
Triplet generation



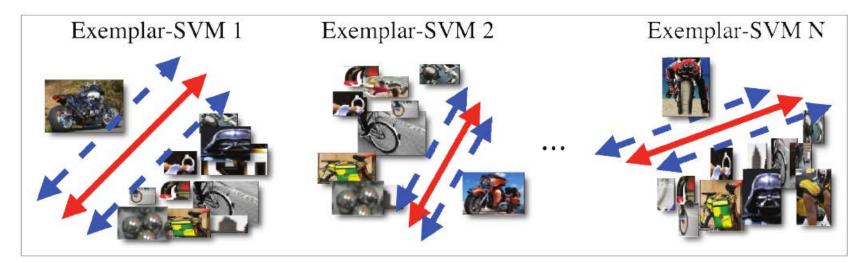
• Triplet loss function

$$L = \sum_{(I_a, I_c, I_f) \in \mathcal{S}} \left[d(I_a, I_c) - d(I_a, I_f) + \frac{|r_f - r_c|}{k} m_0 \right]_+$$

• Finally, an unsupervised bootstrapping framework



- Ways other than diffusion process to utilize data distribution information
 - Exemplar-SVM: each image in the database is used as the only positive sample to train an SVM



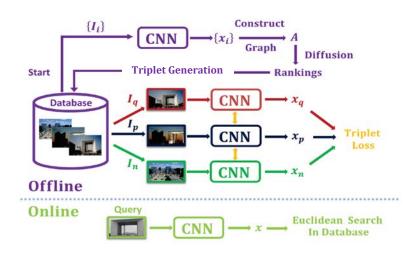
- 1. Ensemble of Exemplar-SVMs for Object Detection and Beyond, Malisiewicz et al. ICCV 2011
- 2. Instance Image Retrieval by Aggregating Sample-based Discriminative Characteristics, Zhang et al. ICMR 2018

Datasets

- Oxford5k, Pairs6k, Oxford105k, Pairs106k, INSTRE, and Sculpture
- Diffusion process is performed on gallery images only
- Query images are exclusively reserved for evaluation
- Experimental setting
 - ResNet101 pre-trained on ImageNet
 - -M = 0.1 and k = 300
 - R-MAC feature representation
 - LCDP diffusion process ($\mathbf{W}_{t+1} = \mathbf{T}\mathbf{W}_t\mathbf{T}^{\top}$)

• Five tasks

- 1. Comparison using **global** representations
- 2. Comparison using **regional** representations
- 3. Comparison with the state-of-the-art methods
- 4. Time and memory cost
- 5. Properties (Image insertion, iterative training)



• Task 1: Comparison using global representations

Method (mAP)	Oxford5k	Paris6k	Oxford105k	Paris106k	INSTRE	Sculpture
R-MAC+E (global)	58.5	73.3	57.3	67.4	37.7	51.0
R-MAC+D (global)	63.1	83.5	62.0	77.0	53.0	61.6
Proposed (global)	63.2	89.6	62.4	82.6	54.5	75.5

• Task 2: Comparison using regional representations

Pairs6k dataset						
Method	Cross-region Matching	Regional Diffusion	Proposed			
mAP	84.4	91.8	93.8			

Achieve **comparable or better** retrieval than the diffusion process

- Task 3: Comparison with the state-of-the-art methods
 - Methods with Euclidean search
 - Achieve higher retrieval accuracy

Method	Dim.	Oxford5k	Paris6k	Oxford105k	Paris106k	INSTRE	
Global image representation with Euclidean search							
[16]	128	43.3	-	35.3	-	-	
[5]	128	55.7	-	52.3	-	-	
[31]	128	59.3	59.0	-	-	-	
[4]	256	53.1	-	50.1	-	-	
[28]	512	66.9	83.0	61.6	75.7	-	
[17]	512	68.2	79.7	63.3	71	-	
[13]*	512	77.7	84.1	70.1	76.8	47.7	
[15]	512	78.2	85.1	72.6	78.0	57.7	
[22]	512	79.7	83.8	73.9	76.4	-	
[16]	1024	56.0	-	50.2	-	-	
[28]	2048	69.4	85.2	63.7	77.8	-	
[11]	2048	86.1	94.5	82.8	90.6	-	
[13]*	2048	83.9	93.8	80.8	89.9	62.6	
[2]	4096	71.6	79.7	-	-	-	
Our global image representation (by modelling diffusion process) + Euclidean search							
Proposed	2048	85.4	96.3	85.1	94.7	71.7	

- Task 3: Comparison with the state-of-the-art methods
 - Methods using diffusion et. al.
 - Achieve higher computational efficiency
 - Achieve competitive retrieval accuracy

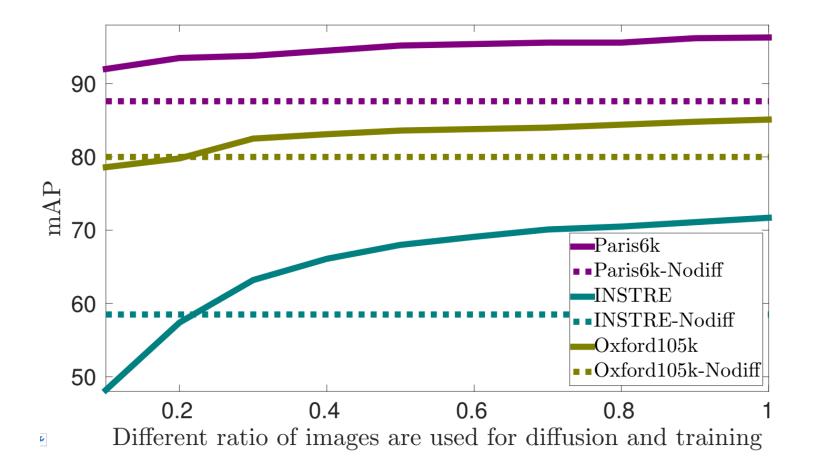
Method	Dim.	Oxford5k	Paris6k	Oxford105k	Paris106k	INSTRE	
Global image representation + diffusion / query expansion / matching / verification							
[17]	-	72.2	85.5	67.8	79.7	-	
[24]	-	75.2	74.1	72.9	-	-	
[21]	-	81.4	80.3	76.7	-	-	
[7]	-	82.7	80.5	76.7	71.0	-	
[9]	-	84.3	83.4	80.2	-	-	
[18]	-	84.9	82.4	79.5	77.3	-	
[27]	-	86.9	85.1	85.3	-	-	
[26]	-	89.4	82.8	84.0	-	-	
[28]	512	77.3	86.5	73.2	79.8	-	
[3]	512	79.0	85.1	-	-	-	
[22]	512	84.5	86.4	80.4	79.7	-	
[13]*	512	85.4	88.4	79.7	83.5	57.3	
[28]	2048	78.9	89.7	75.5	85.3	-	
[13]	2048	87.1	96.5	87.4	95.4	80.5	
[11]	2048	90.6	96.0	89.4	93.2	-	
[13]*	2048	89.6	95.3	88.3	92.7	70.5	
[14]	2048	87.5	96.4	87.9	95.3	80.5	
Our global image representation (by modelling diffusion process) + Euclidean search							
Proposed	2048	85.4	96.3	85.1	94.7	71.7	

- Task 4: Time and memory cost
 - No need extra memory to store the affinity matrix A
 - Consistently faster (10 times or more) in online retrieval

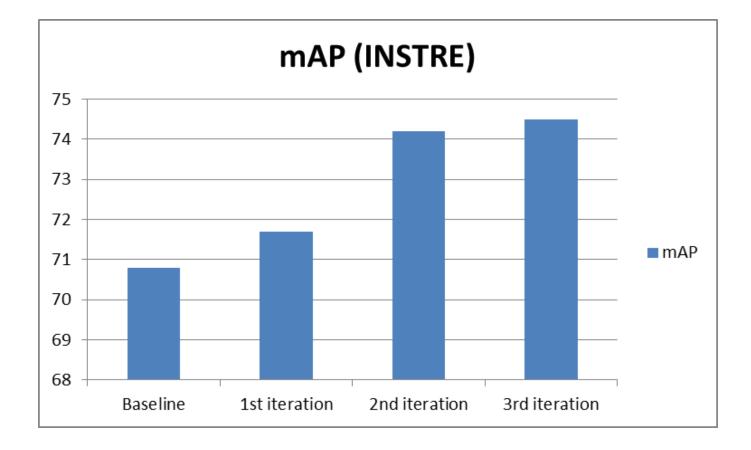
Comparison of average time / memory usage (Second / GB) in online retrieval

	Global	Global feature representation			Regional feature representation		
Dataset	Oxford5k	INSTRE	Oxford105k	Oxford5k	INSTRE	Oxford105k	
Diff. based	0.020/0.01	0.100/0.03	2.90/0.11	0.6/0.1	2.9/0.6	13.0/2.1	
Proposed	0.002/N.A.	0.011/N.A.	0.03/N.A.	0.1/N.A.	0.4/N.A.	1.43/N.A.	

- Task 5: Properties (robustness to new image insertion)
 - What if new images are inserted?
 - Do we need to redo diffusion immediately?



- Task 5: Properties (Iterative training)
 - Obtain **better retrieval** by extra one or two iterations
 - A gradual feature adaptation



Conclusion

- Adapt pre-trained CNN features to new image datasets
- Utilize the unprecedented modelling capability of DNN
- Improve retrieval without using additional labels, extra information, or external datasets
- An **unsupervised** framework to bootstrap image retrieval
- But, a data-specific approach
- Not yet explicitly resolve the gap between domains
- Any more direct approach other than diffusion process
- Computational efficiency for large image databases

Key references

- 1. M. Donoser and H. Bischof, "Diffusion Processes for Retrieval Revisited," CVPR 2013.
- 2. Ahmet Iscen, Giorgos Tolias, Yannis S Avrithis, Teddy Furon, and Ondrej Chum. Efficient diffusion on region manifolds: Recovering small objects with compact CNN representations. CVPR 2017.
- 3. Ahmet Iscen, Giorgos Tolias, Yannis S Avrithis, and Ondrej Chum. Mining on manifolds: Metric learning without labels. CVPR 2018.
- Yan Zhao, Lei Wang, Luping Zhou, Yinghuan Shi, Yang Gao. Modelling Diffusion Process by Deep Neural Networks for Image Retrieval. BMVC 2018.
- Zhongyan Zhang, Lei Wang, Yang Wang, Luping Zhou, Jianjia Zhang, Fang Chen. Instance Image Retrieval by Aggregating Sample-based Discriminative Characteristics. ICMR 2018.

Images Courtesy of Google Image