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Burstiness

A property that a visual element appears more frequently (or less
frequently) than statistically expected.
Source of nuissance variability (a signal but statistically speaking it is
a noise to us)

Term coined in [Jegou et al., On the Burstiness of Visual Elements
(CVPR’09)]
But the idea explored earlier [Boughorbel et al., Generalized
Histogram Intersection Kernel for Image Recognition (ICIP’05)] via
the square root+intersection kernel: k(φ,φ′)=

∑
i min(φ0.5

i , φ′0.5i ).
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Burstiness

Detecting consistent across images most representative patches may
be hard.

Instead, equalize statistics via Power Normalization:
ψ(φ)=φγ , 0<γ≤1.
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First-order Occurrence Pooling

The local descriptors x are extracted from an image and coded by f
that operates on columns.

Pooling g aggregates visual words from the mid-level features φ along
rows:

Three simple steps:
φn = f (xn,D), ∀n ∈ N (encode, e.g. SC, LLC, SA) (1)

ĥk = g
(
{φkn}n∈N

)
(pool, Max-pooling, Average, MaxExp) (2)

h = ĥ/‖ĥ‖2 (normalise) (3)
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Baseline pooling operators

Operator g aggregates mid-level features φ into image signature ψ.

Pooling   :

e.g.:
- avg
- max

Baseline operators:

Average pooling: performs count of a given visual word in image.
Max-pooling: detects presence of a visual word in image.

Observation: Max-pooling is invariant to the repeatability of the feature:
a proxy for invariance to repeatable visual stimuli.
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Analytical pooling operators

can be:

or

MaxExp - probability of at least one mid-level feature to be 1 given
dk : 1− (1− p)N (Bernoulli i.i.d. features) [Boureau et al., A
Theoretical Analysis of Feature Pooling in Vision Alg. (ICML’10)]
ExaPro - the probability of at least one visual word dk present in
image i : 1− ∏

n∈N
(1− φkn) (i.i.d. features)

[Lingqiao et al., In Defence of Soft-assignment Coding (ICCV’11)]
Gamma - Power Normalisation pγ

AxMin - we proposed a universal approximator: min (βp, 1)
We showed that all these operators are similar.
[Koniusz et al., Comparison of Mid-Level Feature Coding Approaches
And Pooling Strategies in Visual Concept Detection (CVIU’12)]
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Analytical pooling operators

MaxExp is derived from the Binomial distribution model with two
events for (φn), that is events (φn =1) and (φn =0) which model the
presence and absence of a feature. The probability of at least one
feature occurrence (φn =1) in N trials becomes:

N∑
n=1

(N
n

)
pn(1−p)N−n = 1−(1−p)N

But, MaxExp given by 1− (1−p)N assumes Bernoulli i.i.d. feature
draws. In the reality (as I know it), the features are never
independent.

We showed that a simple relaxation 1− (1−p)η where η≈N can
‘correct’ overestimated cummulant p (thus removing the i.i.d.
assumption).

But what η in 1− (1−p)η and what γ in pγ is best? Do you know to
what degree your features are dependent? Do you know to what
degree ‘count’ vs. ‘detection’ correlates with your class label? No.
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Analytical pooling operators

CNNs are not that different, e.g. Perceptrons use point-wise
convolution (linear operation) followed by a non-linearity.

Background: Perceptrons
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Output: (w x + b)

Turns out pooling operators and non-linearity,e.g. Sigmoid, are the same
(or a very similar) thing. But more about that later on!
[Koniusz et al., A Deeper Look at Power Normalizations (CVPR’18)]
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Higher-order Occurrence Pooling
Use second-order statistics with ↑⊗r , e.g. ↑⊗2φ = φφT :

Formally, this can be expressed in four steps:
φn = f (xn,D), ∀n ∈ N (encode/zero-center or not) (4)

ψn = ⊗rφn (co-occurrences) (5)

ψn := u: (ψn) (vectorise or not) (6)

ĥk = g
(
{ψkn}n∈N

)
(pool with some Power Norm or not) (7)

h = ĥ/‖ĥ‖2 (normalise or not) (8)
HO reduces uncert. of Max-pooling: VOC07 ∼ 70% vs. 65% FV.

TO better than SO? Depends on the complexity of the pipeline.

Pretty much all modern bilinear pooling pipelines with CNNs are variations of the above
pipeline. Alas, many recent papers conveniently avoid citing the Eigenvalue (Spectral) Power
Normalization which we proposed first in 2013, or they even rebrand it...
[Koniusz et al., Higher-order occurrence pooling on mid-and low-level features: Visual concept
detection (HAL archives 2013)]
[Koniusz et al., Higher-order Occurrence Pooling for Bags-of-Words: Visual Concept Detection
(TPAMI, 2016)]
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Connection to non-Euclidean distances

But, before that we had Covariance Region Descriptors (CRD).
[O. Tuzel et al., Region covariance: A fast descriptor for detection and
classification (ECCV, 2006)].

They were often used with Riemannian-inspired distances (not Power Norm Σγ

but e.g. , the Log-Euclidean log(Σ) map.)
[Carreira et al., Semantic Segmentation with Second-Order Pooling (ECCV, 2012)]

Also, a bunch of non-Euclidean distances which ‘dislike’ semi-definite matrices but
‘love’ the geodesic path on the cone:

|| Log(Σ)−Log(Σ∗)||F (Log-Euclidean) (9)

[Arsigny et al., Log-euclidean metrics for fast and a simple calculus on diffusion
tensors (Magnetic Resonance in Medicine, 2006)]

|| Log(Σ−
1
2 Σ∗Σ−

1
2 )||F (Affine Invariant Reimmannian Metric) (10)

[Pennec et al., A Riemannian Framework for Tensor Computing (IJCV, 2006)]

1

γ
||Σγ−Σ∗γ ||F (Power-Euclidean) (11)

[Dryden et al., Non-euclidean statistics for covariance matrices, with applications
to diffusion tensor imaging (Annals of Applied Statistics, 2009]

Only Power-Euclidean dist. including Matrix Square Root || Sqrt(Σ)−Sqrt(Σ∗)||F
and Cholesky ||Chol(Σ)−Chol(Σ∗)||F ‘like’ semi-definite matrices and they reduce
burstiness, although they were not designed for that purpose nor for image classification.
We showed that connection first in our HAL paper, 2013.

Piotr Koniusz (Data61/CSIRO/ANU) Foundations of Second- and Higher-order RepresentationsDecember 14, 2019 11 / 52



What are tensors?

Scalars, vectors, matrices, third-order tensors such that
X ∈ RN1×N2×N3 , and higher-orders such that X ∈ RN1×N2×N3×...×NK .
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Tensor outer product (simplified)

Outer product of three vectors u, v, z can be written as
Xmno = umvnzo and X = uvT↑⊗3z.

Outer product of order r of a vector u with itself can be written as
Xmno...z = umunuo · ... · uz and X = ↑⊗ru.
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Why tensors at all?

To compare images, we want to capture distribution of their
patches/local descriptors/local receptive fields in CNN etc.

The characteristic function ϕx(ω)=EX

(
exp(iωTx)

)
describes the

probability density fX (x) of an image (patches x ∼ X ).

This gives us the following Taylor expansion:

EX

( ∞∑
r=0

i j

r !
〈x,ω〉r

)
≈ 1

N

N∑
n=0

∞∑
N

i r

r !
〈↑⊗rxn, ↑⊗rω〉 , (12)

∞∑
r=0

i r

r !

〈
1

N

N∑
n=0

↑⊗rxn, ↑⊗rω

〉
=
∞∑
r=0

〈
X (r),

i r

r !
↑⊗rω

〉
, (13)

where our tensor descriptor X (r) = 1
N

N∑
n=0
↑⊗rxn.
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SPD matrix+SVD

For SPD matrices X ∈ SN++, we have eigenvalue decomposition such
that X = UλUT =

∑
i λiiuiu

T
i where UTU =I and λii > 0.

For any matrices X ∈ RN1×N2 , we have singular value decomposition
such that X = UλV T =

∑
i λiiuiv

T
i where UTU = V TV =I.
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Tensor properties

For higher-order tensors, there exist many decompositions, e.g. CP
(CANDECOMP/PARAFAC) given as X =

∑I
i λiuiv

T
i ↑⊗3zi and

generally UTU 6= V TV 6= ZTZ 6= I.

There exist also many definitions of tensor rank, notably the smallest
possible I in the decomposition above such that the equality holds.

Also, I is upper bounded, that is: I ≤ min(N1N2,N1N3,N2N3).

For third-order, the Frobenius norm is given by X=
√ ∑

m,n,o
X 2
m,n,o .

For third-order, the dot-product is given by

〈X ,Y〉=
√ ∑

m,n,o
Xm,n,o · Ym,n,o .
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Tensor properties

Another popular decomposition called Higher Order Singular Value
Decomposition is given as X =

∑
m,n,o GmnoumvTn ↑⊗3zo and

UTU = V TV = ZTZ = I.

G is known as so-called core tensor (equivalent of singular value
matrix in SVD but non-diagonal values are typically non-zero too).

U , V , Z are known as factor matrices. They are obtained by
flattening tensor in each mode and regular left-hand side singular
vectors of SVD form U , V , Z, respectively.

An important concept is the so-called n-mode product. Assume
X ∈ RN1×...×NK and matrix U ∈ RJ×NI , then:
(X ×n U)i1,...,in−1,j ,in+1,...,iK =

∑Nn
in=1 xi1,...,ın,...,iK · uj ,in .
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Tensor properties

It follows that X = G ×1 U ×2 V ×3 Z and

G = X ×1 U−1 ×2 V−1 ×3 Z−1 = X ×1 UT ×2 V T ×3 ZT .
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TOSST Texture Descriptors

Region covariance descriptors (co-occurrences) use the outer-product
of low-level feature vectors ↑⊗2u = uuT .

Let us have non-linear co-occurrence descriptors.

Can we form more informative co-occurrences?
Yes, we extend ↑⊗2 to third-order outer product ↑⊗3

[Koniusz, Cherian, Sparse Coding for Third-order Super-symmetric Tensor

Descriptors with Application to Texture Recognition (CVPR, 2016)]
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TOSST Texture Descriptors

Non-linear third-order descriptors
+eigenvalue Power Normalization (ePN).

Eigenvalue Power Normalisation prevents
correlated signal bursts. Imagine the largest
eigenvalue repesents the count of pattern of
brick and the 2nd represents the tree bark. Surely, the amount of
brick and bark patterns should not affect the prediction. But it does!

Higher-order models can be derived analytically.
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Push-forward distribution of PN
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Thus, MaxExp and Gamma do a similar job, but we will show that
MaxExp has very fast non-SVD based backprop rules.

MaxExp is even faster than the matrix square root via Newton-Schulz
iterations... So why the obsession with the matrix square root?
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Higher-order Occurrence Pooling: derivation

Assume a kernel, e.g. RBF and its linearisation given by:
ker (u, ū) ≈

〈
φ, φ̄

〉
.

Assume the dot product
〈
φ, φ̄

〉
on a pair of features and polynomial

kernel:
〈
φ, φ̄

〉r
, r≥2.

Define a sum kernel between two sets of features U ={un}n∈N and
Ū ={ūn̄}n̄∈N̄ for two images/regions/sequences (anything you like):

Ker
(
U , Ū

)
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

ker (un, ūn̄)r

≈ 1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

〈
φn, φ̄n̄

〉r
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

(
K∑

k=1

φknφ̄kn̄

)r

(14)
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Higher-order Occurrence Pooling: derivation

The rightmost summation can be re-expressed as a dot product of
two outer-products of order r on φ:(
K∑

k=1

φknφ̄kn̄

)r

=
K∑

k(1)=1

...

K∑
k(r)=1

φk(1) φ̄k(1) · ... · φk(r) φ̄k(r) =
〈
⊗rφn,⊗r φ̄n̄

〉
F

(15)
Now, the problem is further simplified:

Ker
(
U , Ū

)
≈ Ker ′

(
Φ, Φ̄

)
=

1

|N |

∑
n∈N

1

|N̄ |
∑
n̄∈N̄

〈
⊗rφn,⊗r φ̄n̄

〉
F

=

〈
1

|N |

∑
n∈N
⊗rφn,

1

|N̄ |
∑
n̄∈N̄

⊗r φ̄n̄

〉
F

=

〈
Avg
n∈N

(
⊗r φn

)
,Avg
n̄∈N̄

(
⊗r φ̄n̄

)〉
F

We introduce operator G (similarity for matrices/tensors, e.g. ePN):

Ker∗
(
Φ, Φ̄

)
=

〈
G
( 1

|N |

∑
n∈N
⊗rφn

)
,G
( 1

|N̄ |
∑
n̄∈N̄

⊗r φ̄n̄

)〉
F

(16)
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Sparse Coding for Third-order Tensor Descriptors

However, X is cubic w.r.t. size of features.
We propose Sparse Coding for Third-order Tensor Descriptors.

We can learn a dictionary to encode TOSST:

arg min
B1,...,BK

α1,...,αN

N∑
n=1

∥∥∥∥∥X n −
K∑

k=1

Bkα
n
k

∥∥∥∥∥
2

F

+ λ ‖αn‖1. (17)

However, B have three modes (overparametrised model), so we learn
instead low-rank dictionary:

arg min
B1,...,BK
b1,...,bK

α1,...,αN

N∑
n=1

∥∥∥∥∥X n −
K∑

k=1

(Bk ↑⊗bk)αn
k

∥∥∥∥∥
2

F

+ λ ‖αn‖1. (18)

Resulting sparse codes α are pooled and used for SVM training.
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Sparse Coding for Third-order Tensor Descriptors

We use training set of TOSST descriptors X 1, ...,XN .

We learn low-rank dictionary atoms B1 ↑⊗b1, ...,BK ↑⊗bK

(outer product of matrices with vectors).

They approximate full-rank tensor atoms B1, ...,BK .

Overparametrized,
high complexity

Fewer parameters,
easier to learn
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Results

Brodatz textures; 99.9% accuracy (the state of the art);
others score ∼ 98.72%.

UIUC materials recognition; 58.0% accuracy.

PASCAL VOC07 descriptor compression:
61.2% mAP (25K signature) vs. 61.3% mAP (176K signature).

Image/video denoising, e.g. arg minG ||X − X̂ ||2F + Ω(X − X̂ ) s.t.
X̂ =G ×1 U ×2 V ×3 Z:
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Action Recognition from 3D Skeletons

Sequence Compatibility Kernel

Components φ(x), φ(y), φ(z), φ( t
T

) denoted as
(◦, �, O, +).

V captures all triplets: (◦�O), (◦�+), (◦O+), (�O+).

ePN evens out counts of these co-occurrences.

Tensors X are the samples for training SVM.
[Koniusz et al., Tensor Representations via Kernel Linearlization for Action
Recognition from 3D Skeletons (ECCV, 2016)]
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Action Recognition from 3D Skeletons

Dynamics Compatibility Kernel

A B
C D

1 9

12 15

Enumerate all unique joint displacement vectors xit−xjt′,i≤j ,t≤t′ .

Embed displacements into RKHS and linearise to obtain φ(xit−xjt′).

Embed start-/end-times into RKHS, linearise to obtain φ( t
T ), φ( t′

T ).

Take outer products φ(xit−xjt′)φ( t
T ) ↑⊗φ( t′

T ), aggregate+ePN.
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Natural Inner Product on Gaussians

Gaussian kernel between u ∈ Rd ′ and ū ∈ Rd ′ can be rewritten as:

Gσ(u−ū) = e−‖u−ū‖2
2/2σ2

=

(
2

πσ2

) d′
2
∫

ζ∈Rd′

Gσ/
√

2(u−ζ)Gσ/
√

2(ū−ζ) dζ.

(19)

Finite approximation by ζ1, ..., ζZ pivots is given by:

φ(u) =
[
Gσ/
√

2(u− ζ1), ...,Gσ/
√

2(u− ζZ )
]T

, (20)

and Gσ(u−ū) ≈
〈

φ(u)

‖φ(u)‖2

,
φ(ū)

‖φ(ū)‖2

〉
. (21)

As few as 6 pivots yield ≤0.8% approximation error.
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Eigenvalue Power Normalisation

Four simple steps in MATLAB:

(E; A1, ...,Ar ) = HOSVD(V) (22)

Ê = Sgn(E) |E|γ (23)

V̂ = ((Ê ⊗1A1) ...)⊗rAr (24)

X = G(V) = Sgn(V̂) |V̂ |γ∗ (25)

Perform Higher Order SVD (equiv. of SVD for more than 2 modes).

Obtain the core tensor E (equivalent of singular values).

Power-normalise this spectrum (values E can be negative).

Assemble back tensor, if needed, perform additionally standard PN.

We have now mathematical interpretation and derivations.
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Action Recognition from 3D Skeletons: results

Eigenvalue Power Normalisation w.r.t. γ:

γ
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Action Recognition from 3D Skeletons: results

Florence3D-Action (state-of-the-art):
SCK DCK SCK+DCK

accuracy 92.98% 93.03% 92.77% 95.47%
size 26565 9450 16920 43485

Bag-of-Poses 82.00% SE(3) 90.88%

UTKinect-Action (state-of-the-art):
SCK DCK SCK+DCK

accuracy 96.08% 97.69% 98.39%
size 40480 16920 57400

3D joints hist. 90.92% SE(3) 97.08%

MSR-Action3D:
SCK+DCK SE(3)

accuracy, standard protocol 92.8% 89.48%
accuracy, specific classes/subjectss 94.8% 92.46%

size 57400 -

NTU: 69% (TO) vs. 62% (SO)

Piotr Koniusz (Data61/CSIRO/ANU) Foundations of Second- and Higher-order RepresentationsDecember 14, 2019 32 / 52



Action Recognition from 3D Skeletons: results

Also, we extended SCK to run over frame-wise scores from
two-stream CNN networks (HOK kernel)

MPII cooking activities (fine-grained): 73.1%
[Cherian, Koniusz, Gould, Higher-order Poling of CNN Features via Kernel

Linearization for Action Recognition (WACV, 2017)]

NEW RESULTS. With a new SCK+ kernel, I get:
MPII cooking activities (fine-grained): ≥80.4%
Florence3D: ∼ 97.0% UTKinect: ≥99.0%, MSR-Action3D: ∼ 97.0
Large-scale NTU (3D body-joints): ≥ 73.0% (TO) vs. ∼ 64.0% (SO)
Large-scale NTU (RGB+3D body-joints): ≥ 91.0% accuracy
Large-scale HMDB51 (RGB+optical-flow): ∼87.2% accuracy
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Domain Adaptation by Mixture of Alignments of Second-
or Higher-Order Scatter Tensors

We focus on the supervised domain adaptation

Given a common set of labels for the source and target data, we use
rich source data (∼30 images per class) to train a robust classifier for
the scarce target data (∼3 images per class)

We utilize two CNN streams Λ and Λ∗, one per source and target
data, combined at the fc level.

The main idea is to establish so-called commonality between
class-wise statistics
[Koniusz et al., Domain Adaptation by Mixture of Alignments of Second- or

Higher-Order Scatter Tensors (CVPR, 2017)].

We devise a so-called alignment loss g acting on second-order scatter
matrices in an end-to-end manner.
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Domain Adaptation by Mixture of Alignments of Second-
or Higher-Order Scatter Tensors

Solid/dashed ellipses indicate the source/target domain distributions

The two hyperplane lines that separate (+) from (−) on the target
data indicate large uncertainty (denoted as β) in the optimal
orientation for the target problem

For every class 1, ...,C , we align within-class scatters from the source
and target data to a desired degree by learning weights of alignment

In the testing stage, we cut-off the source network:
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Domain Adaptation: Formulation
We solve a trade-off between the classifier loss ` and the alignment
loss g which acts on the scatter tensors X , X ∗ and related to them
means µ, µ∗:

arg min
W,b,Θ,Θ∗

s. t. ||φn||22≤τ,
||φ∗

n′ ||
2
2≤τ,

∀n∈IN,n′∈I∗N

`(W, b,Λ ∪Λ∗) + λ||W||2F +
σ1

C

∑
c∈IC

||X c−X ∗c ||2F +
σ2

C

∑
c∈IC

||µc−µ∗c ||22︸ ︷︷ ︸
g(Φ,Φ∗)

.

We minimize over the CNN parameters of the source and target
streams Θ, Θ∗, hyperplane W and bias b

We use feature vectors from fc in the source network stream, one per
image, and associated with them labels. This forms pairs
Λ≡{(φn, yn)}n∈IN , where φn∈Rd and yn∈IC , ∀n∈IN
For the target data, we define pairs Λ∗≡{(φ∗n, y∗n )}n∈I∗N , where

φ∗∈Rd and y∗n∈IC , ∀n∈I∗N
Moreover, class-specific sets of feature vectors are given as
Φc≡{φc

n}n∈INc
and Φ∗c≡{φc∗

n }n∈IN∗c , ∀c∈IC . Then,

Φ≡(Φ1, ...,ΦC ) and Φ∗≡(Φ∗1, ...,Φ
∗
C )
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Domain Adaptation: From Tensors to Kernels

We express the costly Frobenius norm between tensors of order r as a
tractable kernelized distance which uses kernels
K r
nn′=〈xn−µ, xn′−µ〉r , K r

nn′=〈yn−µ∗, yn′−µ∗〉r and

K r
nn′=〈xn−µ, yn′−µ∗〉r :

||X (r)−X ∗(r)||2F =
1

N2
1TKr1+

1

N∗2
1TKr1− 2

NN∗
1TKr1.

Results on the Office dataset (A�D, VGG streams):
sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 aver. acc.

S+T 90.6 88.9 89.4 92.4 90.1 87.2 91.1 88.2 90.9 89.4 89.83±1.4
So+To+Fo+ζ 93.1 93.1 92.0 92.7 93.3 89.9 94.1 91.9 94.0 93.4 92.73±1.1
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Domain Adaptation: Rimannian distances

We combine the source and target CNN streams:

(a) (b) (c)
DA pipeline:
(a) Source/target streams Λ and Λ∗ merge at the classifier level.
(b) Loss ~ aligns covariances on the manifold of S++ matrices.
(c) At the test time, we use the target stream and the trained
classifier.

For alignment of covariances, the Euclidean distance is suboptimal in
the light of Riemannian geometry.
[Koniusz et al., Museum Exhibit Identification Challenge for the Supervised

Domain Adaptation and Beyond (ECCV, 2018)].
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Domain Adaptation: Rimannian distances

For alignment of covariances/SPD matrices, the Euclidean distance is
suboptimal in the light of Riemannian geometry.

Dist./Ref. d2(Σ,Σ∗) Invar. Tr. Geo. d if OΣ ∂d2(Σ,Σ∗)
∂ΣIneq. S+ if S+

Frobenius ||Σ−Σ∗||2F rot. yes no fin. fin. 2(Σ−Σ∗)

AIRM || log(Σ−
1
2 Σ∗Σ−

1
2 )||2F aff./inv. yes yes ∞ ∞ −2Σ−

1
2 log(Σ−

1
2 Σ∗Σ−

1
2 )Σ−

1
2

JBLD log
∣∣∣Σ+Σ∗

2

∣∣∣− 1
2 log|ΣΣ∗| aff./inv. no no ∞ ∞ (Σ+Σ∗)−1− 1

2Σ
−1

We use Affine Inv. Riemannian Metric (AIRM) and Jensen-Bregman LogDet Divergence

(JBLD).

Piotr Koniusz (Data61/CSIRO/ANU) Foundations of Second- and Higher-order RepresentationsDecember 14, 2019 39 / 52



Domain Adaptation: Rimannian distances

For GPU/CPU, SVD of large matrices (d≥2048) in CUDA BLAS is
extremely slow.

Idea: we exploit the low-rank nature of our covariance matrices + low
number of datapoints (RKHS-friendly setting).

For typical N≈30, N∗≈3, we get 33×33 dim. covariances rather
than 4096×4096.

For each class c∈IC , we choose X=Z= [Φc ,Φ
∗
c ].

From the Nyström projection, we obtain:
Π(X)=(ZTZ)−0.5ZTX= ZX=(ZTZ)0.5 =(XTX)0.5.

Then Π(Φ)=[y1, ..., yN ] and Π(Φ∗)=[yN+1, ..., yN+N∗].

Π(X) is isometric w.r.t. AIRM/JBLD, that is
d2
g (Σ(Φ),Σ(Φ∗))=d2

g (Σ(Π(Φ)),Σ(Π(Φ∗))) (*)

Z(X) can be treated as a constant in differentiation
∂Π(X)
∂Xmn

= ∂Z(X)X
∂Xmn

=Z(X) ∂X
∂Xmn

=Z(X)Jmn (*)

Z is a composite rotation (*) and the Euclidean, JBLD and AIRM
distances are rotation-invariant (*), hence isometry (*)
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Domain Adaptation: Museum Exhibit Identification
Challenge (New Dataset)

In light of the Office detaset reaching ∼90%, we have proposed a new challenging
dataset

Open MIC has 866 different types of museum exhibits

∼7600 source images (mobile phone, well aligned)

∼7600 target images (wearable cameras, in-the-wild, various photometric and
geometric distortions: blur, motion, zoom, glare, clipping, clutter, rotations, etc)

So JBLD AIRM

sp1 55.8 57.7 57.2
sp2 58.9 58.9 58.9
sp3 69.6 71.4 71.4
sp4 53.8 57.7 57.7
sp5 58.3 60.4 60.4

acc. 59.3 61.2 61.1

AIRM vs. JBLD.
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Domain Adaptation: Museum Exhibit Identification
Challenge (New Dataset)
Source:

Target:

http://users.cecs.anu.edu.au/~koniusz/openmic-dataset/

We challenge you to obtain 60% on 1-shot 20-way few-shot learning, 75% on 1-shot 5-way few-shot learning,

or 50% in unsupervised domain adaptation :) Can your algorithm generalize without memorizing millions of

images from ImageNet? After all, few-shot learning is about learning from few examples not from 2M images...
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Domain Adaptation: Action Recognition

Let ΠA and ΠB be two sequences, each with J joints, and M and N frames,
respectively

Let xis ∈R3 and yjt ∈R3 correspond to coordinates of joints

We define an SCK kernel between sequences ΠA and ΠB as:

K(ΠA,ΠB ) =
1

MN

∑
i∈IJ

∑
s∈IM

∑
t∈IN

Kσ1
(xis − yit)

2 Gσ2
(
s

M
− t

N
), (26)

Linearization of this kernel results in the following feature maps:

On NTU→SBUKinect, we get 91.13→94.36% increase

On NTU→UTK, we get 96.5%→98.9%
[Tas, Koniusz, CNN-based Action Recognition and Supervised Domain Adaptation
on 3D Body Skeletons via Kernel Feature Maps (BMVC, 2018)]
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Face Recovery from Portraits
Gatys used covariance alignment to transfer the style to contents images. [Gatys et al.,
Image Style Transfer Using Convolutional Neural Networks (CVPR, 2016)]

We use the Log-Euclidean distance to cluster most distinct styles for training a
destylization pipeline. [Shiri, Yu, Porikli, Hartley, Koniusz, Identity-preserving Face
Recovery from Stylized Portraits (IJCV, 2019)]

RF

SF A B C D E Ours

RF: Ground-truth face, SF: Stylised face, Ours: Recovered face

A: Gatys, B: Johnson, C: Li and Wand’s (MGAN), D: Isola (pix2pix), E: Zhu (CycleGAN)
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A Deeper Look at Power Normalisations

We look at power normalisations in end-to-end setting

We derive element-wise and spectral pooling operators

Pooling ψ(p) ψ′(p)
ψ(p) ψ′(p)

function if p<0 if p= 0

Gamma inv. ∞ pγ γpγ−1

MaxExp inv. fin. 1−(1−p)η η(1−p)η−1

AsinhE ok fin. Asinh(γ′p) γ′√
1+γ′2p2

SigmE ok fin. 2

1+e−η′p
−1 2η′e−η

′p

(1+e−η′p )2

Gamma MaxExp AsinhE SigmE

G(M) Mγ I−(I− M
Tr(M)+λ

)η log
(
γ′M+(I+γ′2M2)

1
2

)
2
(
I+e

−η′M
Tr(M)+λ

)−1
−I

der. Closed/SVD Closed/SVD SVD SVD

[Koniusz et al., A Deeper Look at Power Normalisations (CVPR, 2018)]
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Deeper Look at Power Normalisations

We analyse power norms which...turn out to be sigmoids (neural nets)

p

ψ
(p
)
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We show that the probability of at least one co-occurrence event
(φn∩φ′n =1) in φn and φ′n simultaneously in N trials is 1−(1−p)N

Our proof uses a Multinomial distribution model with four events for
(φn) and (φ′n) and events (φn∩φ′n =1), (φn =1, φ′n =0),
(φn =0, φ′n =1) and (φn∪φ′n =0). The probability of at least one
co-occurrence (φn∩φ′n =1) in N trials becomes:

N∑
n=1

N−n∑
n′=0

N−n−n′∑
n′′=0

( N
n,n′,n′′,N−n−n′−n′′

)
pnqn

′
sn
′′
(1−p−q−s)N−n−n′−n′′ = 1−(1−p)N

Many papers, e.g. RootSIFT, Fisher Vectors, bi-linear pooling, CNNs
use the square root normalisation but do not seem to understand its
role that well. Take the bin ‘clipping’in SIFT: that is a Power
Normalisation (AxMin) too.
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Deeper Look at Power Norm. (Fast Spectral MaxExp)

Backprop through Spectral MaxExp given as I−(I−M)η is very fast
(no need to backpropagate through SVD).

It can be achieved faster than Newton-Schulz iterations for Gamma
M0.5 while it enjoys a tunable parameter η.

Without the loss of generality, assume M is trace-normalized. Then,
the derivative ∂G(M)

∂ Mkl
of spec. MaxExp has the closed form:

∂G(M)

∂ Mkl
=−

η−1∑
n=0

(I−M)nJkl (I−M)η−1−n . (27)

Now, let `(Ψ,W) be some classification loss (or any layer with
param. W) where Ψ∈Sd+ (or S++) are our feature maps, that is
Ψ=G(M). Then, we obtain a more versatile equation:∑

k,l

∂`(Ψ,W)

∂Ψkl

∂Ψkl

∂M
=−

η−1∑
n=0

(I−M)n
∂`(Ψ,W)

∂Ψ
(I−M)η−1−n. (28)

Finally, the trace-norm. can be reversed:(
I−(I− M

Tr(M)+λ
)η
)
· (Tr(M) + λ)γ where γ=0.5. Why? Mind the energy

(norms) of pre-trained model.
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Deeper Look at Power Norm. (Fast Spectral MaxExp)

Computing (I−M)1, ..., (I−M)η−1 for η∈N+ has a lightweight
complexity O(m log(η−1)), where m is the cost of a matrix-matrix
multiplication, and log(η−1) is the number of multiplications in
exponentiation by squaring.

The final complexity is O(mη) which scales linearly with η.

In comparison, an approx. der. of the matrix square root via
Newton-Schulz iterations has O(mk) complexity, where k≈20 is set
by authors of [Lin, Maji, Improved Bilinear Pooling with CNNs (BMVC, 2017)]

In head-to-head comparisons, we require log(η−1) +2η/2≈56.6
matrix-matrix multiplications for η=50 (typically 20≤η≤80).
Newton-Schulz iter. require 4k =80 matrix-matrix mult. for k =20.

Memory-wise, MaxExp and Newton-Schulz iter. need to store the
chain of η−1 and 2k matrices, resp.

In contrast, the cost of SVD is O(dω), where 2<ω<2.376, and the
implementation of SVD in CUDA BLAS is suboptimal.
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Deeper Look at Power Normalisations

Results

Flower102: 97.28% (spectral MaxExp), 96.78% (element-wise
MaxExp), 95.74% (element-wise Gamma), 94.70% (bilinear), other
methods ∼95.3%

FMD: 85.5% (element-wise MaxExp) vs. 82.3% (other methods)

MIT67: 86.3% (element-wise MaxExp) vs. 84.3% (Fourier Features)

Food101: 87.8% (spectral MaxExp) vs. 85.5% (CNN kernel pooling)

In conclusion, Fast Spectral MaxExp [Koniusz et al., A Deeper Look at

Power Normalisations (CVPR, 2018)] is even faster than the matrix square
root via the Newton-Schulz iterations in [Lin, Maji, Improved Bilinear

Pooling with CNNs (BMVC, 2017)].

A new work on gamma-democratic higher-order pooling – similar to
matrix spectral operators, a bit lower accuracy but even faster [Lin,

Maji, Koniusz, Second-order Democratic Aggregation (ECCV, 2018)]
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Few-shot Learning

Second-order pooling works really nicely in relation learning
(decreasing burst for pairs/groups is even more important).
[Zhang, Koniusz, Power Normalizing Second-order Similarity Network for Few-shot

Learnings (WACV, 2019)]

[Zhang, Zhang, Koniusz, Few-Shot Learning via Saliency-guided Hallucination of

Samples (CVPR, 2019)]

Open MIC dataset L p1→p2 p1→p3 p1→p4 p2→p1 p2→p3 p2→p4
Relation Net

20
40.1±0.5 30.4±0.5 41.4±0.5 23.5±0.4 26.4±0.5 38.6±0.5

SoSN 61.0±0.5 42.3±0.5 60.2±0.5 35.7±0.5 37.0±0.5 54.8±0.5
SoSN+SigmE 61.5±0.6 42.5±0.5 61.0±0.5 36.1±0.5 38.3±0.5 56.3±0.5
SoSN+SigmE+224x224 63.6±0.5 48.7±0.6 65.6±0.5 42.6±0.5 43.9±0.5 61.8±0.5
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Few-shot Learning

  

�Θ
�Θ

Distance Scores

One-Hot Vector

Affine Subspace 
Matrices

Projection
Feature 
Extractor

Feature 
Extractor

Query Set

Support Set

Unlabeled Set

Subspaces are also second-order representations.
[Simon, Koniusz, Harandi, Projective Subspace Networks For Few-Shot Learning

(2018)]

Open MIC dataset 5-way 1-shot
p1 −→ p2 p2 −→ p3 p3 −→ p4 p4 −→ p1 Avg

Matching Nets 69.40± 0.9% 57.30± 1.0% 76.35± 1.0% 53.68± 0.9% 64.18
PN 66.33± 0.9% 52.03± 1.1% 74.28± 0.9% 54.30± 0.9% 61.74

SoSN 78.00± 0.9% 60.10± 1.1% 75.50± 1.0% 57.80± 1.1% 67.85
PSN 72.92± 0.9% 57.60± 0.9% 77.59± 0.9% 61.29± 1.1% 67.35

PSN+ 74.24± 0.9% 59.20± 0.9% 78.25± 0.9% 61.48± 0.9% 68.29
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Thank You
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