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Optimization methods on Manifolds.

e Rotation averaging (SO3)

* Weiszfeld Algorithm on Riemannian
manifolds

* General IRLS algorithms on manifolds
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Kernels and kernel algorithms

A kernel is like a “similarity measure’ defined on points in
some set.

K(z,y) for z,y € S
If K(xz,y) is “large” then z and y are similar, if K(z,y) is
small, they are dissimilar.
Analogous to inner product < z,y >.

If a symmetric kernel is positive definite then it is essentially
the same as an inner product.

Applications

— Kernel SVM

— Kernel PCA

— Kernel Fisher Discriminant Analysis

— Dictionary learning (object recognition)
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Positive-definite Kernel

e A kernel K : X x X — IR is called positive definite if
for all real numbers ¢;,

n
Y e K( XXy >0
i=1
for all choices of X1, X>,...Xp, €S
e [ heorem: If a symmetric kernel is positive definite,
then it is just like an inner product: there exists a
map ® : X — H, a Hilbert space, such that



e Radial Basis Function Kernel
NICTA
e Commonly used kernel:

K(q;,y) — e—||aj—y||2/o'2
— e_d(xvy)Q/UQ

e This is always a positive definite kernel for all o, if |||
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Examples of manifolds

R
Sphere S"

Rotation space SO(3) — used in rotation averaging
Positive definite matrices — “covariance features”
Grassman Manifolds — used to model sets of images
Essential manifold — structure and motion

Shape manifolds — capture the shape of an object



OQ Kernels in the tangent space

NICTA
e Map from the manifold to the tangent space using

the logarithm map.
e Carry out kernel learning methods in the tangent space.




e Why this is not a good idea at all

NICTA
Angle-axis representation of Rotations

Lkl Flatten out the meridians
(longitude lines)

5 = theta /2P
t=1- phiFl

Azimuthal Equidistant Projection




NICTA

ion

t

tant Projec

IS

thal Equ

Imu

Az



Tissot Indicatrix — shows distortion
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Why is the RBF kernel positive definite?

1. Kernel is positive definite on R".

2. How do we generalize this?

3. Can we extend this to
(a) Metric spaces: Distance function d(z,y) defined.
(b) Normed vector spaces?
(c) Manifolds?
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When is the RBF kernel positive definite

e Consider a “distance function” d(X,Y) defined on a
set S (metric space)

e [ heorem: The radial basis function
K(X,Y) = e~ d(X;Y)?/0?

iIs a positive definite kernel for all o, if and only if S
can be isometrically embedded in a Hilbert Space.

d(X,Y) = [[¢(X),o6(Y) |l

e (Technical point) It is not enough that H be a Banach
space. The inner product is needed.



e
- A negative result

\
Theorem. R" is the only complete manifold M for which the

RBF kernel
—d2 (z,y)

k(z,y) =e o2
is a kernel for all o.

Here, dy(z,y) is the geodesic distance on the manifold.

Solution: Find distance metrics on manifolds that do lead to
RBF kernels. " Asymptotically geodesic distances’.

1. Monotonic function of geodesic distance.

2. In the limit equal to a geodesic distance for small distances.
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Positive Definite Matrices

e The Positive definite n xn matrices form a cone (not a linear
subspace).

e Affine invariance:
d(X,Y)=d(ATXA ATY A)

e \We can define an “affine invariant” Riemannian metric.
e Other metrics:

— Logarithm:
d(X,Y) = |[log(X) —log(Y)| r
— Stein Metric:

d(X,Y)? = —logdet(XY) + 2logdet((X + Y)/2)
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Kernels on Positive Definite Matrices
: Geodesic Positive Definite
Memic Name Formuly Distance Gaussian Kernel Vo > 0

Log-Euclidean | 1og(S1) — log(S2)|| Yes Yes
Affine-Invariant || log(S —1/282 —1/2)||F Yes No
Cholesky || chol(S;) — chol(Sz)|| No Yes
Power-Euclidean L|S¢ —Sg| P No Yes

Root Stein Divergence | [log det (5S1 + 3S2) — 3 logdet(S:S,)] 2 No No

Euclidean Cholesky Power-Euclidean| Log-Euclidean

Nb. of
classes | KM | KKM KM | KKM | KM | KKM KM | KKM

3 7250 79.00 | 73.17| 82.67 | 71.33| 84.33 | 75.00 | 94.83
6488 | 73.75 | 69.50| 84.62 | 69.50| 83.50 | 73.00| 87.50
54.80| 70.30 | 70.80| 82.40 | 70.20 | 82.40 | 74.60| 85.90
50421 69.00 | 59.83| 73.58 | 59.42| 73.17 | 66.50| 74.50
4257 68.86 | 50.36| 69.79 | 50.14 | 69.71 59.64 | 73.14
40.19 | 68.00 | 53.81| 69.44 | 54.62| 68.44 | 58.31| 71.44

o0~ N ' =




Pedestrian detection

Table: Sample images from INRIA dataset



Pedestrian detection

@ Covariance descri

ptor is used as the region descriptor following

Tuzel et al., 2008.

@ Multiple covariance descriptors are calculated per detection
+ MKL framework is used to build the

window, an SVM

classifier.
—— Proposed Method (MKL on Manifold)
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Visual object categorization

Table: Sample images from ETH-80 dataset



Visual object categorization

@ ETH-80 dataset, 5 x 5 covariance descriptors.

@ Manifold k-means and manifold kernel k-means with different
metrics.

Nb. of Euclidean Cholesky Power-Euclidean| Log-Euclidean
classes | KM | KKM KM | KKM KM | KKM KM | KKM
3 7250| 79.00 | 73.17| 82.67 | 71.33| 84.33 | 75.00| 94.83
64.88| 73.75 | 69.50| 84.62 | 69.50| 83.50 | 73.00| 87.50
54.80| 70.30 | 70.80| 82.40 | 70.20| 82.40 | 74.60| 85.90
50.42| 69.00 | 59.83| 73.58 | 59.42| 73.17 | 66.50| 74.50
4257 | 68.86 | 50.36| 69.79 | 50.14| 69.71 | 59.64| 73.14
40.19| 68.00 | 53.81| 69.44 | 5462 | 68.44 | 58.31| 71.44

o ~N & O A&




Texture recognition
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Table: Sample images from Brodatz



DTI| segmentation

@ Diffusion tensor at the voxel is directly used as the descriptor.

@ Kernel k-means is utilized to cluster points on Symj, yielding
a segmentation of the DTI| image.

Riemannian kernel Euclidean kernel



Motion segmentation

@ The structure tensor (3 x 3) was used as the descriptor.

@ Kernel k-means clustering of the tensors yields the

segmentation.

@ Achieves better clustering accuracy than methods that work

in a low dimensional space.

~ S

Frame 1
. B

LLE on Symy

Frame 2

ek

LE on Sym;3

‘

KKM on Sym;3

HLLE on Symy
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Shape Manifolds

e Captures what is invariant in a set of k£ points in R",
when you take away rotation, translation and scale.

e Formally, a shape is an equivalence class of k points,
where two sets of k points are equivalent if they are
related by rotation, translation and scaling.

e Jayasumana et al, (ICCV 2013)



Atul's Research Page

www.research rutgers.edu

Yaw:

Tilt: —1.63336

Atul Kanaujia

Shape Manifold.
Captures the configuration of a set of points,
allowing for rotation, translation and scaling.

Guillaume Charpiat



e

NICTA
2D Shape manifolds

e Represent each point as a complex number.
e VVector of n complex numbers represents a shape.
e Normalize this vector to unit length and scale to length 1.

e “Preshape manifold” is equal to the complex n-dimensional
sphere.

Z1

<
S=| “

<m

e Multiplication by a non-zero complex unit complex number
» = e rotates all the points.

e Shape manifold is equal to the complex projective space.
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Kernels on the shape manifold

e Define cosf = || (X.Y) ||

e sin(#) is the “full-Procrustes” distance — yields a pos-
itive definite RBF kernel

e Other possible distance
— dp(X,Y) = 2sin(6/2) does not
— Geodesic distance ¢ does not



()@

NICTA

Figure 1: The ETH-80 dataset. Sample images from dif-
ferent objects and classes in the ETH-80 dataset.
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Radial kernels on n-sphere

ki(x,y) = (x,y)", fori e N,

1 ifx =y,
koi1(x,y) =< -1 ifx= -y,

0 otherwise,

L. % ==+y
0 otherwise.

k_o(x,y) = {



Schoenberg’s result

Theorem 4.3. A kernel k : Sy X Sy — R is radial with
respect to the geodesic distance and is p.d. if and only if it
admits the form

k(X %) = Z a;iki(x,y)

1=—2

where ) . a; < oo and a; > 0 for all i. Furthermore, k is
continuous if and only ifa_1 = a_o = 0.



Radial kernels on n-sphere

ki(x,y) = (x,y), fori € N,

1 IExX =y,
k—l(xa y) =4 -1 ifx= g &

0 otherwise,

1. % =ty
0 otherwise.

k_o(x,y) = {

As i increases k. rapidly approaches either k , or k.

Therefore, the infinite series can be closely approximated with
a finite sum.

Readily fits in to a Multiple Kernel Learning (MKL) framework!



Extending to other manifolds

* Grassmann manifold with Projection

distance
dp([Y1], [Y2]) = WY —YoY5'||F

ki([Y1),[Ya]) = (1Y)" — YaY5 )%

e Shape manifold with full Procrustes
distance

drp [21 Zz] \/1 —| Z, Zg

ki([21], [z2]) = |(21,22)|*



Hand sketch recognition
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Figure 1: Hand sketch recognition. Recognition accuracies for
different dataset sizes. The curves for the baselines were repro-

duced from [7].
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Face & action recognition

Method LLCelenly | gy datiet
dataset

GDA [10] 5872 +3.0 | 6733+ 1.1

GGDA [11] 61.06 £22 | 73.54 +2.0

Projection kernel kp [10] 64.76 £2.1 | 74.66 +1.2

Proj. Gaussian kernel kpg [12] | 71.78 £2.4 | 76.95 + 0.9

Our method 72.00 + 1.9 78.05 + 1.0

Table 2: Face and action recognition. Average recognition ac-
curacies of our method compared to other kernel methods on G, .

el =




Shape recognition

Method Sutterfly Pet dataset
dataset

Procrustes kernel kpp 57.75 £ 2.0 67.48

Proc. Gaussian kernel kppg [12] | 60.37 = 1.6 77.34

Tangent Gaussian kernel [ 7] 58.96 + 1.8 75.77

Our method 63.98 + 1.6 80.87

Table 3: Shape recognition. Average recognition accuracies of
our method compared to other kernel methods on SP™. Note that
the train/test partition on the Pet dataset is fixed and given by [ 7].

. |Y|~f |
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The End



