

Traditional approaches

- DATA => CONV => RELU => POOL => Activation tensor
- Flattening looses information
- Can we leverage directly the activation tensor before the flattening?
 - Potential space savings
 - Performance improvement

Tensor Contraction

 Tensor contraction: contract along each mode to obtain a low rank, compact tensor

Tensor Contraction Layers (TCL)

- Take activation tensor as input
- Feed it through a TCL
- Output a low-rank activation tensor

Tensor Contraction Layers (TCL)

- Compact representation less parameters
- Measured in terms of percentage of space savings in the fully connected layers: n_{TCL}

$$1 - \frac{n_{TCL}}{n_{original}}$$

 Similar and sometimes better performance

Performance of the TCL

Trained end-to-end

- On ImageNet with VGG:
 - 65.9% space savings
 - performance drop of 0.6% only

- On ImageNet with AlexNet:
 - 56.6% space savings
 - Performance improvement of 0.5%

Low-rank tensor regression

Tensor Regression Networks, J. Kossaifi, Z.C.Lipton, A.Khanna, T.Furlanello and A.Anandkumar, ArXiv pre-publication

Performance and rank

Performance of the TRL

- 92.4% space savings, 4% decrease in Top-1 accuracy
- 68.2% space savings, no decrease in Top-1 accuracy

TRL rank	Performance (in %)		
	Top-1	Top-1	Space savings
baseline	77.1	93.4	0
(200, 1, 1, 200)	77.1	93.2	68.2
(150, 1, 1, 150)	76	92.9	76.6
(100, 1, 100)	74.6	91.7	84.6
(50, 1, 1, 50)	73.6	91	92.4

Results on ImageNet with a ResNet-101

Implementation

 MXNet as a Deep Learning framework http://mxnet.io/

 TensorLy for tensor operations https://tensorly.github.io

 Coming soon: mxnet backend for TensorLy tensor operation on GPU and CPU

Conclusion and future work

- Tensor contraction and tensor regression for Deep Neural Nets
- Add as an additional layer or replace one
- Less parameters
- Similar or even better performance

Future work

- Faster tensor operations
- Explore more tensor operations / networks architectures

Mahalo!

Any questions?

jean.kossaifi@gmail.com

@JeanKossaifi

