
Huizi	Mao1,	Song	Han1,	Jeff	Pool2,	Wenshuo	Li3,	Xingyu	Liu1,	Yu	Wang3,	  
William	J.	Dally1,2	

1

Exploring the Granularity of Sparsity
in Convolutional Neural Networks

Stanford	University1,	NVIDIA2,	Tsinghua	University3

IMAGE RECOGNITION SPEECH RECOGNITION

Important Property of Neural Networks

Results get better with

more data +
bigger models +

more computation

(Better algorithms, new insights and
improved techniques always help, too!)

2012
AlexNet

2015
ResNet

152 layers
22.6 GFLOP
~3.5% error

8 layers
1.4 GFLOP
~16% Error

16X
Model

2014
Deep Speech 1

2015
Deep Speech 2

80 GFLOP
7,000 hrs of Data

~8% Error

10X
Training Ops

465 GFLOP
12,000 hrs of Data

~5% Error

Dally, NIPS’2016 workshop on Efficient Methods for Deep Neural Networks

Models are Getting Larger

2

Hard to distribute large models through over-the-air update

3

The Challenge: Model Size

Our Previous Work: Pruning Neural Networks

[Han et al. NIPS’15]

Pruning Trained	Quantization Huffman	Coding 4

Exploring the Granularity of Sparsity that is
Hardware-friendly

5

irregular sparsity more regular sparsity

=>

fully-dense 
 model

4 types of pruning granularity

=>=>

[Han et al, NIPS’15] [Molchanov et al, ICLR’17]

regular sparsity

Pruning Algorithm

6

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 8

Algorithm 1: Pruning Deep Neural Networks
Initialization: W (0) with W (0) ⇠ N(0, ⌃).
Hyper-parameter: threshold, step.
Output :W (t).
———————————————– Train Connectivity ——————————————–
while not converged do

W (t)
= W (t�1) � ⌘(t)rf(W (t�1)

; x(t�1)
);

t = t + 1;
end
———————————————– Prune Connections ——————————————–
// initialize the mask by thresholding the weights.
Mask = 1(|W | > threshold);
W = W · Mask;
———————————————– Retrain Weights ——————————————–
while not converged do

W (t)
= W (t�1) � ⌘(t)rf(W (t�1)

; x(t�1)
);

W (t)
= W (t) · Mask;

t = t + 1;
end
———————————————– Iterative Pruning ——————————————————–
threshold = threshold � step;

goto Pruning Connections;

learning rate at the retraining phase. A practical recipe of adjusting the learning rate at the Retrain
Weights step is to use a learning rate according to Equation 3.1.

LR1 < LR
retrain

< LR2. (3.1)

Since the weights are already settled to a good local minimum after the initial Train Connectivity
phase, the learning rate of the final retraining step needs to be smaller than training from scratch.
Since pruning moved the weights away from the original local minimum, the learning rate should
be larger than the end of the Train Connectivity phase. This equation is a practical guide for the
learning rate hyper parameter search.

3.2.2 L1/L2 Regularization

Choosing the correct regularization impacts the performance of pruning and retraining. L1 regu-
larization penalizes non-zero parameters resulting in more parameters near zero. This gives better
accuracy after pruning but before retraining. However, the remaining connections are not as good as
with L2 regularization, resulting in lower accuracy after retraining. Overall, L2 regularization gives
the best pruning results. This is further discussed in Section 3.4, the experiment section.

Coarse Grain Pruning Saves Index

7

Table 1: Comparison of accuracies with the same density/sparsity.
Model Density Granularity Top-5

AlexNet 24.8%
Kernel Pruning (2-D) 79.20%
Vector Pruning (1-D) 79.94%

Fine-grained Pruning (0-D) 80.41%

VGG-16 23.5%
Kernel Pruning (2-D) 89.70%
Vector Pruning (1-D) 90.48%

Fine-grained Pruning (0-D) 90.56%

GoogLeNet 38.4%
Kernel Pruning (2-D) 88.83%
Vector Pruning (1-D) 89.11%

Fine-grained Pruning (0-D) 89.40%

ResNet-50 40.0%
Kernel Pruning (2-D) 92.07%
Vector Pruning (1-D) 92.26%

Fine-grained Pruning (0-D) 92.34%

DenseNet-121 30.1%
Kernel Pruning (2-D) 91.56%
Vector Pruning (1-D) 91.89%

Fine-grained Pruning (0-D) 92.21%

implies it is unsuitable for lossless model compression. For finer-grained pruning, the accuracy loss142

is much smaller and we even noticed small accuracy increases during the first several pruning stages.143

Note that the results for AlexNet are better than the original work by Han et al.[7] due to a smoother144

pruning process. We give a detailed description in Section 7.145

The results in Table 1 and Figure 4 support the assumption that coarse-grained sparsity causes greater146

accuracy loss than fine-grained one. Pruning with a large grain size like filters will greatly hurt the147

accuracy. On the other hand, pruning with a smaller grain size leads to similar accuracy-sparsity148

curves with fine-grained pruning. Notice that in Figure 4, some curves appear to rise smoothly at149

first. That suggests coarse-grained pruning can still reach similar compression rates as fine-grained150

pruning, giving additional advantages described in the following section.151

5 Comparison of Storage152

Model size is an important factor for real-world mobile applications. On the one hand, it constrains153

the application in memory-bounded devices. On the other hand, memory access is more than two154

orders of magnitude more energy expensive during the execution of deep neural network[7]. Sparsity155

serves as an effective approach to compress neural network models. Sparse neural network is usually156

stored with a similar format to Compressed Row Storage(CRS) for sparse matrix, where both values157

and indices are stored. Coarse-grained sparsity, due to its regularity, is able to save the number of158

indices as illustrated in Figure 5. Therefore the coarse-grained sparse models take up less storage159

than fine-grained ones at the same sparsity.160

Weight

Weight

Weight

Index

Index

Index

Weight

Weight

Weight

Index

Saving!

Fine-grained Coarse-grained

Figure 5: Illustration of index saving.
Figure 6: Three curves are almost identical,
indicating sparsity structure does not impact
quantization.

5

Figure 2. Accuracy-Sparsity Curve of AlexNet with different grain sizes. X-axis: sparsity of conv layers(percentage of zero weights).
Y-axis: top-5 accuracy on ImageNet validation set.

Figure 3. Accuracy-Sparsity Curve of ResNet-18 with different grain sizes. X-axis: sparsity of conv layers(percentage of zero weights).
Y-axis: top-5 accuracy on CIFAR-10 validation set.

coarse-grained sparse models take up less storage than fine-
grained ones, when they are at the same level of sparsity.

We want to investigate how accuracies differ at the same
level of storage(instead of sparsity) for different granularity
of pruning. We do not use full-precision 32-bit weights but
use 8-bit weights instead, as 8-bit weights have been proven
to be sufficient in a lot of literature[]. We use 4-bit indexes
to store the distances between adjacent non-zeros, follow-
ing the method in Deep Compression[8]. Moreover, as in-
dicated in the Deep Compression paper, the quantization
method works independently with model sparsity. We still
plot the accuracy-bits curves of different types of pruned
models in Figure6. The results validate the independence
of quantization to pruning.

Figure 7 shows the accuracy-storage relationship of
AlexNet. We find that the first three curves(Fine-grained,
Vector and Kernel) are closer than those in Figure 2. It indi-
cates the effects of index saving for coarse-grained pruning.

To better compare the compression ratio under the same

accuracy constraint, we list the results of AlexNet, VGG-16
and GoogLeNet in Table 2. Here the storage ratio is defined
as the model size of pruned 8-bit model(with 4-bit indexes)
to that of dense 8-bit model. Notice that it is almost im-
possible to prune a model that exactly match the baseline
accuracy, so we use linear interpolation to obtain the esti-
mated density and storage ratio.

6. Advantages of Coarse-grained Sparsity

It has been mentioned in the previous sections that filter
pruning is able to obtain acceleration on general-purpose
processors like CPU or GPU. For intermediate grain sizes
like kernels or sub-kernel vectors, though it is still diffi-
cult for acceleration on general-purpose processors, there
are several advantages over fine-grained sparsity. Those ad-
vantages enable simpler circuits and higher concurrency on
custom hardware.

In conv layers, 2-D convolution is usually the primitive

4324

8

X-axis: sparsity of convolution layers (percentage of zero weights).  
Y-axis: top-5 accuracy on ImageNet validation set.

Fine-grain Pruning: remove 80% weights (no loss of accuracy) 
2-D Pruning: remove 65% weights (no loss of accuracy) 
=> Although we are able to remove less #weights, we get better regularity, SIMD friendly

(no pruning)

Figure 2. Accuracy-Sparsity Curve of AlexNet with different grain sizes. X-axis: sparsity of conv layers(percentage of zero weights).
Y-axis: top-5 accuracy on ImageNet validation set.

Figure 3. Accuracy-Sparsity Curve of ResNet-18 with different grain sizes. X-axis: sparsity of conv layers(percentage of zero weights).
Y-axis: top-5 accuracy on CIFAR-10 validation set.

coarse-grained sparse models take up less storage than fine-
grained ones, when they are at the same level of sparsity.

We want to investigate how accuracies differ at the same
level of storage(instead of sparsity) for different granularity
of pruning. We do not use full-precision 32-bit weights but
use 8-bit weights instead, as 8-bit weights have been proven
to be sufficient in a lot of literature[]. We use 4-bit indexes
to store the distances between adjacent non-zeros, follow-
ing the method in Deep Compression[8]. Moreover, as in-
dicated in the Deep Compression paper, the quantization
method works independently with model sparsity. We still
plot the accuracy-bits curves of different types of pruned
models in Figure6. The results validate the independence
of quantization to pruning.

Figure 7 shows the accuracy-storage relationship of
AlexNet. We find that the first three curves(Fine-grained,
Vector and Kernel) are closer than those in Figure 2. It indi-
cates the effects of index saving for coarse-grained pruning.

To better compare the compression ratio under the same

accuracy constraint, we list the results of AlexNet, VGG-16
and GoogLeNet in Table 2. Here the storage ratio is defined
as the model size of pruned 8-bit model(with 4-bit indexes)
to that of dense 8-bit model. Notice that it is almost im-
possible to prune a model that exactly match the baseline
accuracy, so we use linear interpolation to obtain the esti-
mated density and storage ratio.

6. Advantages of Coarse-grained Sparsity

It has been mentioned in the previous sections that filter
pruning is able to obtain acceleration on general-purpose
processors like CPU or GPU. For intermediate grain sizes
like kernels or sub-kernel vectors, though it is still diffi-
cult for acceleration on general-purpose processors, there
are several advantages over fine-grained sparsity. Those ad-
vantages enable simpler circuits and higher concurrency on
custom hardware.

In conv layers, 2-D convolution is usually the primitive

4324

(3-Dim)
(2-Dim)
(1-Dim)

(0-Dim)

Accuracy-Sparsity Curve of AlexNet with different granularity of sparsity.

Accuracy ~ Sparsity ~ Granularity

=>

Table 1: Comparison of accuracies with the same density/sparsity.
Model Density Granularity Top-5

AlexNet 24.8%
Kernel Pruning (2-D) 79.20%
Vector Pruning (1-D) 79.94%

Fine-grained Pruning (0-D) 80.41%

VGG-16 23.5%
Kernel Pruning (2-D) 89.70%
Vector Pruning (1-D) 90.48%

Fine-grained Pruning (0-D) 90.56%

GoogLeNet 38.4%
Kernel Pruning (2-D) 88.83%
Vector Pruning (1-D) 89.11%

Fine-grained Pruning (0-D) 89.40%

ResNet-50 40.0%
Kernel Pruning (2-D) 92.07%
Vector Pruning (1-D) 92.26%

Fine-grained Pruning (0-D) 92.34%

DenseNet-121 30.1%
Kernel Pruning (2-D) 91.56%
Vector Pruning (1-D) 91.89%

Fine-grained Pruning (0-D) 92.21%

implies it is unsuitable for lossless model compression. For finer-grained pruning, the accuracy loss142

is much smaller and we even noticed small accuracy increases during the first several pruning stages.143

Note that the results for AlexNet are better than the original work by Han et al.[7] due to a smoother144

pruning process. We give a detailed description in Section 7.145

The results in Table 1 and Figure 4 support the assumption that coarse-grained sparsity causes greater146

accuracy loss than fine-grained one. Pruning with a large grain size like filters will greatly hurt the147

accuracy. On the other hand, pruning with a smaller grain size leads to similar accuracy-sparsity148

curves with fine-grained pruning. Notice that in Figure 4, some curves appear to rise smoothly at149

first. That suggests coarse-grained pruning can still reach similar compression rates as fine-grained150

pruning, giving additional advantages described in the following section.151

5 Comparison of Storage152

Model size is an important factor for real-world mobile applications. On the one hand, it constrains153

the application in memory-bounded devices. On the other hand, memory access is more than two154

orders of magnitude more energy expensive during the execution of deep neural network[7]. Sparsity155

serves as an effective approach to compress neural network models. Sparse neural network is usually156

stored with a similar format to Compressed Row Storage(CRS) for sparse matrix, where both values157

and indices are stored. Coarse-grained sparsity, due to its regularity, is able to save the number of158

indices as illustrated in Figure 5. Therefore the coarse-grained sparse models take up less storage159

than fine-grained ones at the same sparsity.160

Figure 5: Illustration of index saving.
Figure 6: Three curves are almost identical,
indicating sparsity structure does not impact
quantization.

5

Prediction Accuracy Comparison 
(under the same density)

Figure 7: Accuracy-Storage Curve of AlexNet with different grain sizes. Notice that vector pruning
only causes 1.5% more storage and kernel pruning causes 6.7% more storage.

We want to investigate how the prediction accuracy changes with different grain sizes of pruning at161

the same level of storage(instead of sparsity). We do not use full-precision 32-bit weights, but 8-bit162

weights instead, as 8-bit weights, either true 8-bit integer formats or 8-bit indices into a table of shared163

fp32 weights, have been proven to be sufficient in a lot of literature[1, 18, 27]. We use 4-bit indices164

to store the distances between adjacent non-zeros, following the method in Deep Compression [28].165

Moreover, as indicated in the Deep Compression paper, the quantization method works independently166

with sparsity. To check if it still works with coarse-grained sparsity, we plot the accuracy-bits curves167

of different types of pruned models in Figure 6. The results show that sparsity structure has negligible168

influence over quantization.169

Figure 7 shows the accuracy-storage relationship of AlexNet. We find that the first three curves(Fine-170

grained, Vector and Kernel) are closer than those in Figure 4. It shows the effect of index saving for171

coarse-grained pruning.172

To better compare the compression ratio with modern deep neural nets, we list the results of AlexNet,173

VGG-16 and GoogLeNet, ResNet-50 and DenseNet-121 in Table 2. Here the storage ratio is defined174

as the model size of pruned 8-bit models(with 4-bit indices) to that of dense 8-bit models. Note that175

it is almost impossible to prune a model that exactly match the baseline accuracy, so we use linear176

interpolation to obtain the estimated density and storage ratio at a given point of accuracy.177

Table 2: Comparison of storage savings at the baseline accuracy. Storage ratio is compared with the
8-bit dense model.

Model Top-5 Granularity Density Storage RatioAccuracy

AlexNet 80.3%
Kernel Pruning (2-D) 37.8% 39.7%
Vector Pruning (1-D) 29.9% 34.5%
Fine-grained Pruning (0-D) 22.1% 33.0%

VGG-16 90.6%
Kernel Pruning (2-D) 44.4% 46.9%
Vector Pruning (1-D) 30.7% 35.8%
Fine-grained Pruning (0-D) 27.0% 40.6%

GoogLeNet 89.0%
Kernel Pruning (2-D) 43.7% 51.6%
Vector Pruning (1-D) 36.9% 47.4%
Fine-grained Pruning (0-D) 32.3% 48.5%

ResNet-50 92.3%
Kernel Pruning (2-D) 61.3% 77.0%
Vector Pruning (1-D) 40.0% 52.7%
Fine-grained Pruning (0-D) 37.1% 55.7%

DenseNet-121 91.9%
Kernel Pruning (2-D) 35.5% 48.9%
Vector Pruning (1-D) 31.1% 43.8%
Fine-grained Pruning (0-D) 26.6% 39.8%

6

Storage Ratio Comparison 
(under the same prediction accuracy)

11

Table 1: Comparison of accuracies with the same density/sparsity.
Model Density Granularity Top-5

AlexNet 24.8%
Kernel Pruning (2-D) 79.20%
Vector Pruning (1-D) 79.94%

Fine-grained Pruning (0-D) 80.41%

VGG-16 23.5%
Kernel Pruning (2-D) 89.70%
Vector Pruning (1-D) 90.48%

Fine-grained Pruning (0-D) 90.56%

GoogLeNet 38.4%
Kernel Pruning (2-D) 88.83%
Vector Pruning (1-D) 89.11%

Fine-grained Pruning (0-D) 89.40%

ResNet-50 40.0%
Kernel Pruning (2-D) 92.07%
Vector Pruning (1-D) 92.26%

Fine-grained Pruning (0-D) 92.34%

DenseNet-121 30.1%
Kernel Pruning (2-D) 91.56%
Vector Pruning (1-D) 91.89%

Fine-grained Pruning (0-D) 92.21%

implies it is unsuitable for lossless model compression. For finer-grained pruning, the accuracy loss142

is much smaller and we even noticed small accuracy increases during the first several pruning stages.143

Note that the results for AlexNet are better than the original work by Han et al.[7] due to a smoother144

pruning process. We give a detailed description in Section 7.145

The results in Table 1 and Figure 4 support the assumption that coarse-grained sparsity causes greater146

accuracy loss than fine-grained one. Pruning with a large grain size like filters will greatly hurt the147

accuracy. On the other hand, pruning with a smaller grain size leads to similar accuracy-sparsity148

curves with fine-grained pruning. Notice that in Figure 4, some curves appear to rise smoothly at149

first. That suggests coarse-grained pruning can still reach similar compression rates as fine-grained150

pruning, giving additional advantages described in the following section.151

5 Comparison of Storage152

Model size is an important factor for real-world mobile applications. On the one hand, it constrains153

the application in memory-bounded devices. On the other hand, memory access is more than two154

orders of magnitude more energy expensive during the execution of deep neural network[7]. Sparsity155

serves as an effective approach to compress neural network models. Sparse neural network is usually156

stored with a similar format to Compressed Row Storage(CRS) for sparse matrix, where both values157

and indices are stored. Coarse-grained sparsity, due to its regularity, is able to save the number of158

indices as illustrated in Figure 5. Therefore the coarse-grained sparse models take up less storage159

than fine-grained ones at the same sparsity.160

Weight

Weight

Weight

Index

Index

Index

Weight

Weight

Weight

Index

Saving!

Fine-grained Coarse-grained

Figure 5: Illustration of index saving.
Figure 6: Three curves are almost identical,
indicating sparsity structure does not impact
quantization.

5

Coarse Grain Pruning doesn't Impact Quantization

Coarse Pruning Helps SCNN Architecture

12

For a sparse network, the larger the grain size is, the less storage it takes. This is due to index sharing178

among the weights of the kernel as shown in Figure 5. However, AlexNet and VGG-16 in particular179

have much closer density/storage results for kernel pruning than GoogLeNet, ResNet, and DenseNet180

do. It is caused by the small size of the convolutional kernels being pruned: these networks have181

many layers of 1x1 convolutions, which do not get any benefit from sharing index values. AlexNet182

and VGG-16, on the other hand, have a multitude of larger convolutions.183

6 Regular Sparsity Helps Hardware Implementation184

It has been mentioned in the previous sections that filter pruning is able to obtain acceleration on185

general-purpose processors like CPUs or GPUs. For intermediate grain sizes like kernels or sub-186

kernel vectors, though it is still difficult for acceleration on general-purpose processors, there are187

several advantages over fine-grained sparsity on customized hardware. Those advantages enable188

simpler circuit design and higher energy efficiency on customized hardware. We qualitatively and189

quantitatively analyze the advantages as follows:190

Qualitative analysis. In convolutional layers, 2-D convolution is usually the primitive operation.191

Kernel pruning (2-D pruning) can easily leads to computation reduction, because the 2-D convolutions192

of deleted kernels can be saved. Recent custom hardware design for CNN also use 1-D convolution193

as the primitive operation[20]. In this case, sub-kernel vector pruning is beneficial. Compared with194

fine-grained sparsity, coarse-grained sparsity is able to preserve the low-level computation logic,195

therefore simplify the hardware design.196

Quantitative analysis. Memory reference is a major factor of energy consumption[7]. Recent work197

on custom hardware exploits both the sparsity of weights and activations of CNNs[19]. In their198

implementation, the weights and input activations are both stored in sparse format while output199

activations are stored in dense format. The indices of weights and activations are used for calculating200

the output address, to which the product of weight and activation will perform a scatter-add operation.201

This process is illustrated in Figure8. After one layer is finished, the output activations will then be202

compressed into the sparse format for next layer.203

Output Buffer

Weight WeightIndex Index Act Index

Compuate
Output

Coordinate

Bypass

 Rd
Addr

 Wr

Figure 8: A simplified dataflow of SCNN architecture. Weights and activations are both stored in
sparse format. Bypass is possible when the same output address is referenced again.

If the same output address is referenced again, data shortcut can be used to avoid the expensive204

read/write. For example, two adjacent weights and two adjacent activations will reference 3 addresses205

instead of 4. Due to the locality, coarse-grained sparse weights have a larger probability of output206

address collision. We simulated with VGG-16 on ImageNet’s validation set to compare the number of207

memory references, and listed the results in Table 3. With the same density, coarse-grained sparsity208

saves 30%� 35% of the memory references.209

7

A simplified dataflow of SCNN architecture. With coarse grained pruning, bypass is
possible when the same output address is referenced again. Reduce memory access.

13

Reduce #Memory Reference

Table 3: Output memory references for VGG-16 (convolutional layers only).

Density Fine-grained Vector Pruning Relative # of memory references(0-D) (1-D)
40.1% 1.77B 1.23B 69.5%
33.1% 1.53B 1.03B 67.2%
27.5% 1.33B 0.87B 65.3%

7 Summary210

In this section we compare our results with previous works on pruning[7, 8]. We select AlexNet, as211

its layer-wise sparsity is published in previous papers. By using a smoother pruning process, we find212

the results of Han et al.[7] can be further improved without any algorithmic change.213

Table 4 gives an overall comparison of key statistics for AlexNet. Apart from the number of214

parameters, there are some other factors affecting the efficiency of a model. Here FLOPs is the total215

number of floating-point operations. Storage is measured with of 8-bit weights and 4-bit indices, as216

indicated in Section 5. Due to the fact that the storage of convolutional layers is much smaller but217

reused much more frequently than fully-connected layers, we add an additional row for storage of218

convolutional layers. The number of memory referenced is calculated by simulating the process of219

Figure 8. Here the baseline number of memory references is obtained from dense model with sparse220

activations.221

The results show that the our fine-grained pruned model already has advantages over the previous state-222

of-art work in terms of FLOPs, storage of convolutional layers and number of memory references.223

Moreover, compared with our fine-grained baseline, vector pruning method can further reduces the224

storage of convolutional layers by 23% and the number of memory references by 43%.225

Table 4: Comparison of pruned AlexNet with previous works which used fine-grained pruning.

Layer Param.
NIPS’15 NIPS’16 Fine-grained Vector Kernel

[7] [8] Pruning Pruning Pruning
(ours) (ours) (ours)

conv1 35K 84% 54% 83% 83% 83%
conv2 307K 38% 41% 26% 26% 26%
conv3 885K 35% 28% 23% 23% 23%
conv4 664K 37% 32% 23% 23% 23%
conv5 443K 37% 33% 23% 23% 23%

fc6 38M 9% 3.7% 7% 7% 7%
fc7 17M 9% 6.6% 7% 7% 7%
fc8 4M 25% 4.6% 18% 18% 18%

Total 61M 11% 5.7% 8.4% 8.4% 8.4%
FLOPs 1.5B 30% 25.4% 24.1% 24.1% 24.1%

Storage(conv) 2.3MB 55.6% 48.3% 36.4% 28.0% 25.5%
Storage(total) 61MB 16.7% 8.5% 12.6% 12.3% 12.2%

#Mem Reference 99M 74.4% 71.7% 60.5% 34.6% 35.2%
Top-5 Accuracy 80.23% 80.01% 80.41% 79.94% 79.20%

8 Conclusion226

We thoroughly explored the granularity of sparsity with experiments on detailed accuracy-density227

relationship. Due to the advantage of index saving, coarse-grained pruning is able to achieve higher228

model compression ratio, which desirable for mobile implementation. We also analyzed the hardware229

implementation advantages and show that coarse-grained sparsity saves ⇠ 2⇥ output memory access230

compared with fine-grained sparsity, and ⇠ 3⇥ compared with dense implementation. Given the231

advantages of simplicity and efficiency from hardware perspective, coarse-grained sparsity enables232

more efficient hardware architecture design of deep neural networks.233

8

Comparison with Previous Work

