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Models are Getting Larger
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The Challenge: Model Size

Hard to distribute large models through over-the-air update

This item is over T00MB.

Microsoft Excel will not download
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Our Previous Work: Pruning Neural Networks
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Exploring the Granularity of Sparsity that is
Hardware-friendly

4 types of pruning granularity
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Pruning Algorithm

Algorithm 1: Pruning Deep Neural Networks

Initialization: W(©) with W© ~ N(0,%).
Hyper-parameter: threshold, step.
Output: W®.

Train Connectivity
while not converged do

W® = Wwt=h _ nOy Iy =1, £E=1).

t=t+1;
end

Prune Connections
// initialize the mask by thresholding the weights.
Mask = 1(|W| > threshold);

W =W - Mask;

Retrain Weights
while not converged do

W® =Wwt=h _ Oy =1, £E=1).

W® =w® . Mask;

t=1t+1;

end

Iterative Pruning
threshold = threshold — step;
goto Pruning Connections;
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Coarse Grain Pruning Saves Index

Weight Weight
Index Wel ght
Weight Weight
Index Index
Weight | |
' Saving!
Index ! :
Fine-grained Coarse-grained

Figure 5: Illustration of index saving.
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Accuracy ~ Sparsity ~ Granularity

Accuracy-Sparsity Curve of AlexNet with different granularity of sparsity.
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X-axis: sparsity of convolution layers (percentage of zero weights).
Y-axis: top-5 accuracy on ImageNet validation set.

Fine-grain Pruning: remove 80% weights (no loss of accuracy) EE s .D
2-D Pruning: remove 65% weights (no loss of accuracy) -

=> Although we are able to remove less #weights, we get better regularity, SIMD friendly
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Prediction Accuracy Comparison

(under the same density)

Model Density Granularity - -Top—S
Kernel Pruning (2-D) 79.20%
AlexNet 24.8% Vector Pruning (1-D) 79.94%

Fine-grained Pruning (0-D) 80.41%
Kernel Pruning (2-D) 89.70%
VGG-16 23.5% Vector Pruning (1-D) 90.48%
Fine-grained Pruning (0-D) 90.56 %
Kernel Pruning (2-D) 88.83%
Googl.eNet 38.4% Vector Pruning (1-D) 89.11%
Fine-grained Pruning (0-D) 89.40%
Kernel Pruning (2-D) 92.07%
ResNet-50 40.0% Vector Pruning (1-D) 92.26%
Fine-grained Pruning (0-D) 92.34%
Kernel Pruning (2-D) 91.56%
DenseNet-121 | 30.1% Vector Pruning (1-D) 91.89%
Fine-grained Pruning (0-D) 92.21%
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Storage Ratio Comparison

(under the same prediction accuracy)

Model Aggf I:e;jcy Granularity Density Storage Ratio
Kernel Pruning (2-D) 37.8% 39.7%
AlexNet 80.3% Vector Pruning (1-D) 29.9% 34.5%
Fine-grained Pruning (0-D) 22.1% 33.0%
Kernel Pruning (2-D) 44.4% 46.9%
VGG-16 90.6% Vector Pruning (1-D) 30.7% 35.8%
Fine-grained Pruning (0-D) 27.0% 40.6%
Kernel Pruning (2-D) 43."7% 51.6%
GoogleNet 89.0% Vector Pruning (1-D) 36.9% 47.4%
Fine-grained Pruning (0-D) 32.3% 48.5%
Kernel Pruning (2-D) 61.3% 77.0%
ResNet-50 92.3% Vector Pruning (1-D) 40.0% 52.7 %
Fine-grained Pruning (0-D) 37.1% 55.7%
Kernel Pruning (2-D) 35.5% 48.9%
DenseNet-121 91.9% Vector Pruning (1-D) 31.1% 43.8%
Fine-grained Pruning (0-D) 26.6% 39.8 %
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Coarse Grain Pruning doesn't Impact Quantization

—=— Fine-grained Pruning(0D) —e— Pruning Vectors(1D)
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Bits per Weight

Figure 6: Three curves are almost identical,
indicating sparsity structure does not impact
quantization.
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Coarse Pruning Helps SCNN Architecture
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A simplified dataflow of SCNN architecture. With coarse grained pruning, bypass 1s
possible when the same output address 1s referenced again. Reduce memory access.
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Reduce #Memory Reference

Table 3: Output memory references for VGG-16 (convolutional layers only).

Density Flng%rg)med Vect(zi _Ii)rl)lmng Relative # of memory references
40.1% 1.77B 1.23B 69.5%
33.1% 1.53B 1.03B 67.2%
27.5% 1.33B 0.87B 65.3%
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Comparison with Previous Work

NIPS’15 NIPS’16 | Fine-grained  Vector  Kernel
Layer Param. 7] [8] Pruning Pruning Pruning
(ours) (ours) (ours)
convl 35K 84% 54 % 83% 83% 83%
conv?2 307K 38% 41% 26 % 26 % 26 %
conv3 885K 35% 28% 23 % 23 % 23 %
conv4 664K 37% 32% 23 % 23 % 23 %
convyd 443K 37% 33% 23 % 23 % 23 %
fc6 38M 9% 3.7 % 1% 7% 1%
fc7 17M 9% 6.6 % 1% 1% 1%
fc8 4M 25% 4.6 % 18% 18% 18%
Total 61M 11% 5.7 % 8.4% 8.4% 8.4%
[ FLOPs 1.5B 30% 25.4% 24.1% 24.1% 24.1 %
Storage(conv) 2.3MB 55.6% 48.3% 36.4% 28.0% 25.5%
Storage(total) 61MB 16.7% 8.5% 12.6% 12.3% 12.2%
#Mem Reference | 99M 74.4% 71.77% 60.5% 34.6 % 35.2%
Top-5 Accurgcy 80.23%  80.01% 80.41 % 79.94%  79.20%
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