
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 1

Tensor Representations for Action Recognition
Piotr Koniusz Lei Wang Anoop Cherian

Abstract—Human actions in video sequences are characterized by the complex interplay between spatial features and their temporal
dynamics. In this paper, we propose novel tensor representations for compactly capturing such higher-order relationships between
visual features for the task of action recognition. We propose two tensor-based feature representations, viz. (i) sequence compatibility
kernel (SCK) and (ii) dynamics compatibility kernel (DCK). SCK builds on the spatio-temporal correlations between features, whereas
DCK explicitly models the action dynamics of a sequence. We also explore generalization of SCK, coined SCK⊕, that operates on
subsequences to capture the local-global interplay of correlations, which can incorporate multi-modal inputs e.g., skeleton 3D body-
joints and per-frame classifier scores obtained from deep learning models trained on videos. We introduce linearization of these kernels
that lead to compact and fast descriptors. We provide experiments on (i) 3D skeleton action sequences, (ii) fine-grained video sequences,
and (iii) standard non-fine-grained videos. As our final representations are tensors that capture higher-order relationships of features,
they relate to co-occurrences for robust fine-grained recognition [1, 2]. We use higher-order tensors and so-called Eigenvalue Power
Normalization (EPN) which have been long speculated to perform spectral detection of higher-order occurrences [3, 4], thus detecting
fine-grained relationships of features rather than merely count features in action sequences. We prove that a tensor of order r, built
from Z∗ dimensional features, coupled with EPN indeed detects if at least one higher-order occurrence is ‘projected’ into one of its

(Z∗
r

)
subspaces of dim. r represented by the tensor, thus forming a Tensor Power Normalization metric endowed with

(Z∗
r

)
such ‘detectors’.

Index Terms—CNN, 3D Skeletons, Action Recognition, Aggregation, Kernels, Higher-order Tensors, HOSVD, Power Normalization.

F

1 INTRODUCTION

Human action recognition is a central problem in computer vision
with potential impact in surveillance, human-robot interaction,
elderly assistance systems, etc. While there have been signifi-
cant advancements in this area over the past few years, action
recognition in unconstrained settings still remains a challenge.
Some papers simplify the problem from using RGB cameras to
the use of Microsoft Kinect or the OpenPose library [5] to localize
human body-parts, produce moving 3D skeletons [6] and use them
for recognition. However, skeletons can be noisy due to badly
localized body-parts, self-occlusions, and sensor errors. Similarly,
a popular strategy of classifying RGB frames into actions followed
by average/max-pooling fails as only correlations of some features
are informative [7, 8, 9]. Such observations motivate the need for
higher-order reasoning on 3D skeletons/frame-wise CNN classifier
scores taking action recognition toward fine-grained modeling.

Recent approaches which work with skeletons can be mainly
divided into two perspectives, namely (i) generative models that
assume the skeleton points are produced by a latent dynamic
model [10] corrupted by noise and (ii) discriminative approaches
that generate compact representations of sequences on which
classifiers are trained [11]. Due to the huge configuration space
of 3D actions and the unavailability of sufficient training data,
discriminative approaches have been more successful. In this line
of research, the main idea is to compactly represent the spatio-
temporal evolution of 3D skeletons, and later train classifiers on

• P. Koniusz and L. Wang are with Data61/CSIRO (former NICTA) and the
Australian National University, Canberra, Australia, ACT2601.
E-mail: see http://claret.wikidot.com

• A. Cherian is with Mitsubishi Electric Research Labs (MERL), Cambridge,
MA, USA.

Manuscript submitted Dec-2018. Manuscript accepted by TPAMI on 24-Dec-
2019.

these representations to recognize actions. Fortunately, there is
a definitive structure to motions of 3D joints relative to each
other due to the connectivity and length constraints of body-
parts. Such constraints have been used with the Lie Algebra [12],
positive definite matrices [13, 14], torus manifold [15], Hanklet
representations [16], etc. While modeling actions with explicit
manifold assumptions is useful, it is computationally costly.

However, action recognition from videos [17, 18, 19, 20] does
not require elaborate skeletal models. A two-stream CNN frame-
work [17] uses two streams to model RGB frames and optical flow.
Tran et al. [18] use CNNs to learn spatio-temporal filters. Karpathy
et al. [19] apply RGB and optical-flow fusion, whereas approach
[20] combines CNNs with LSTM to model temporal flow. Wang et
al. [21] apply a long-range temporal structure modeling. Tran et al.
[22] study several forms of spatiotemporal convolutions. Recent
works on fine-grained activity recognition use CNNs [23, 24] and
the human pose estimation for high-level fine-grained reasoning
[23, 25, 26, 27]. Finally, the recent I3D model [28] ‘inflates’ 2D
CNN filters pretrained on ImageNet to spatio-temporal 3D filters
yielding state-of-the-art results.

In contrast to these approaches, we present a novel represen-
tation of actions based on 3D skeleton sequences and the CNN
classifier score sequences. We avoid assumptions about the data
manifold by capturing higher-order statistics of the body-joints
and the classifier score interactions per sequence. To this end, our
scheme combines positive definite kernels and higher-order ten-
sors, with the goal of obtaining rich and compact representations
that benefit from the non-linearity of radial basis functions (RBF).
Such a scheme captures higher-order data statistics [4], complex
action dynamics [29, 30] and fine-grained relations [1, 2].

We present two representations for classification of 3D
skeletons. Our first representation, sequence compatibility kernel
(SCK), captures the spatio-temporal compatibility of body-joints
between two sequences. To this end, we present an RBF kernel

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 2

formulation that jointly captures the spatial and temporal similarity
of each body-pose (normalized with respect to the hip position)
in a sequence against those in another. We show that tensors
generated from third-order outer-products of the linearizations of
these kernels are a simple yet powerful representation capturing
higher-order statistics of body-parts.

Our second representation, termed dynamics compatibility
kernel (DCK), represents spatio-temporal dynamics of each se-
quence explicitly. We present a novel RBF kernel formulation that
captures the similarity between a pair of body-poses in a given
sequence explicitly, and then compare it against such body-pose
pairs in other sequences. Such spatio-temporal modeling could
be expensive due to the volumetric nature of space and time.
However, we show that using an appropriate kernel model can
shrink the time-related variable into a small representation of
constant size after kernel linearization. With this approach, we
can model both spatial and temporal variations in the form of
co-occurrences which could otherwise be prohibitive. We show
empirically that SCK and DCK are complementary.

As SCK/DCK work on entire sequences, we formulate an
SCK-like kernel over multiple length subsequences as some of
subsequences capture the gist of performed actions better than full
sequences. To show the versatility of the extended SCK, we apply
it to capture spatio-temporal compatibility of frame-wise CNN
classifier scores from videos (regular and fine-grained actions).

We present experiments on seven standard datasets, namely (i)
UTKinect-Actions [31], (ii) Florence3D-Actions [32], (iii) MSR-
Action3D [33] and (iv) HMDB-51[34] datasets as well as two
fine-grained datasets (v) NTU RGB+D [35], (vi) MPII Cooking
Activities [25] and (vii) Kinetics [36]. We use the first three
datasets as a source of 3D body joint sequences (as well as
Kinetics), NTU for both 3D body joint sequences, and videos
with RGB frames and optical flow frames, and HMDB-51 and
MPII Cooking Activities for videos with RGB and optical flow
frames. We show that our extensions can still achieve state-of-the-
art accuracy two years after SCK/DCK were proposed [29]. To
summarize:
i. We design sequence and dynamics compatibility kernels that

capture spatio-temporal evolution of 3D skeleton body-joints.
ii. We derive linearizations of these kernels by tensors.

iii. We extend these kernels to aggregation over multiple subse-
quences and CNN classifier scores.

iv. We conduct a novel theoretical analysis of Tensor Power
Normalization which connects it to subspace methods. We
are the first to conduct a theoretical analysis of higher-order
pooling with Tensor Power Normalization in Section D, and
use it for generic/fine-grained action recognition.

2 RELATED WORK

In the first part of our paper, we focus on action recognition
from an articulated set of connected body-joints that evolve in
time [37]. A temporal evolution of the human skeleton is very
informative for action recognition as shown by Johansson in his
seminal experiment involving the moving lights display [38]. At
the simplest level, the human body can be represented as a set of
3D points corresponding to body-joints such as elbow, wrist, knee,
ankle, etc. Action dynamics has been modeled using the motion of
such 3D points in [14, 39], using joint orientations with respect to a
reference axis [40] and even relative body-joint positions [41, 42].
In contrast, we represent these 3D body-joints by kernels whose

linearization results in higher-order tensors capturing complex
statistics. We also note parts-based approaches that use connected
body segments [12, 43, 44, 45]. For details, see a survey [11].

We also handle the temporal domain differently to other
methods. 3D joint locations are modeled as temporal hierarchy
of coefficients in [14]. Pairwise relative positions of joints were
modeled in [41] and combined with a hierarchy of Fourier coeffi-
cients to capture temporal evolution of actions. In [42], the relative
joint positions and their temporal displacements are modeled with
respect to the initial frame. In [12], the displacements and angles
between the body parts are represented as a collection of matrices
belonging to SE(3), a special Euclidean group. The temporal
domain is handled by the dynamic time warping and Fourier
temporal pyramid matching. In contrast, we avoid expensive time
warping by modeling the temporal domain with an RBF kernel
invariant to local temporal shifts.

Our scheme also differs from works such as kernel descriptors
[46] that sum gradient orientations over image patches, action
recognition via kernelized covariances [47, 48, 49], and a time
series kernel [50] which extracts spatio-temporal autocorrelations.
In contrast, our scheme sums over several multiplicative and addi-
tive RBF kernels. We capture higher-order statistics by linearizing
a polynomial kernel and avoid evaluating costly kernels directly.

Third-order tensors have been used to form spatio-temporal
tensors on videos in [51]. Non-negative tensor factorization is used
for image denoising [52], tensors are used for texture rendering
[53] and for face recognition [54]. A survey of multi-linear
algebraic methods for tensor subspace learning is available in [55].
These methods use a single tensor, whereas we use tensors as
descriptors [3, 4, 56, 57]. However, we use third-order tensors for
action recognition, which poses a set of new challenges.

For fine-grained action recognition, high-level sophisticated
action reasoning [23, 25, 26, 27] is typically used together with
pose estimation systems [58, 59]. However, these approaches scale
poorly to millions of video frames. Human-object interactions in
the videos are analyzed in [60]. Correlations between space-time
features are proposed in [61].

Power Normalization approaches [2, 3, 4, 56, 62] speculate
that Eigenvalue Power Normalization prevents so-called bursti-
ness, thus performing spectral detection of higher-order occur-
rences of features [3, 4], which can be paraphrased as ‘do a knife,
a hand and a chopping board co-occur together?’ rather than ‘how
many knifes, hands and chopping boards appear in the scene?’

Moreover, first-order pooling was successfully used for rep-
resenting action recognition via hallucination [63]. Papers [2, 62]
study second-order pooling, power normalizing functions and their
taxonomy while fast pooling methods are proposed in [1, 62, 64].

Finally, second-order pooling was successfully used for few-
shot action recognition [65], few-shot classification [66, 67], few-
shot segmentation [68], modulating optimization [69], style trans-
fer [70, 71, 72, 73] and action self-supervision [74]. Noteworthy
are also graph convolutional networks [75, 76, 77] and embed-
dings [78] easily applicable to 3D skeleton action recognition.

3 PRELIMINARIES

In this section, we review our notations and the necessary back-
ground on shift-invariant kernels and their linearizations.

3.1 Tensor Notations
Figure 1a illustrates the notion of tensors, their order and modes.
Let V ∈ Rd1×d2×d3 denote a third-order tensor. Using the Matlab

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 3

notation, we refer to the k-th slice of this tensor as V :,:,k, which
is a d1 × d2 matrix. For a matrix V ∈ Rd1×d2 and a vector
v ∈ Rd3 , the notation V = V ↑⊗v produces a tensor V ∈
Rd1×d2×d3 whose k-th slice is given by V · vk, vk being the
k-th coefficient of v. Figure 1b illustrates such an outer-product.
Symmetric third-order tensors of rank one are formed by the outer-
product of a vector v ∈ Rd in three modes, that is, a rank-one
V ∈ Rd×d×d is obtained from v as V =(↑⊗3v, (vvT) ↑⊗v)
which yields Vijk = vi ·vj ·vk, where Vijk represents the ijk-th
element of V . Matrices have two modes: the first and second mode
correspond to the row and column indexes i and j, respectively.
Order r tensors have r modes addressed by Vi1...ir where V ∈
Rd1×...×dk×...×dr and k indicates the mode k. Concatenation of n
tensors in mode k is simply stacking them along mode k, denoted
as [Vi]

⊕k
i∈In ≡ numpy.concatenate((V1, ...,Vn), axis = k−1)).

In is an index sequence 1, 2, ..., n. We define the Frobenius norm
‖V‖F =

√∑
i,j,k V2

ijk and the inner-product between X and Y
as 〈X ,Y〉 =

∑
ijk XijkYijk. Also, ez are spanning bases of RZ .

Further basics on tensors and tensor algebra can be found in [79].

3.2 Kernel Linearization
Let Gσ(u − ū) = exp(−‖u− ū‖22 /2σ2) denote a standard
Gaussian RBF kernel centered at ū and having a bandwidth σ.
Kernel linearization refers to rewriting this Gσ as an inner-product
of two infinite-dimensional feature maps. To obtain these maps,
we use a fast approximation method based on probability product
kernels [80]. Specifically, we employ the inner product of d′-
dimensional isotropic Gaussians given u, u′∈Rd

′
. Thus, we have:

Gσ(u−ū)=

(
2

πσ2

)d′
2
∫

ζ∈Rd′

Gσ/
√

2(u−ζ)Gσ/
√

2(ū−ζ) dζ. (1)

Eq. (1) is then approximated by replacing the integral with the
sum over Z pivots ζ1, ..., ζZ . Thus, we obtain a feature map φ:

φ(u; {ζi}i∈IZ) =
[
Gσ/

√
2(u− ζ1), ..., Gσ/

√
2(u− ζZ)

]T
,

(2)

and Gσ(u−ū) ≈
〈√
cφ(u),

√
cφ(ū)

〉
, (3)

where c is a const. Eq. (3) is the linearization of the RBF kernel.
Eq. (2) is the feature map. {ζi}i∈IZ are pivots. As we use 1 dim.
signals, we simply cover interval [−1; 1] (or [0; 1]) with Z equally
spaced pivots. For clarity, we drop {ζi}i∈IZ and write φ(u), etc.

3.3 Equivalence between Polynomial Kernels and the
Dot-product of Tensors [4]
For any two Z ′ dim. feature vectors φ, φ̄∈RZ

′
, we have:

〈
φ, φ̄

〉r
=

Z′∑
i1=1

...
Z′∑
ir=1

φi1 φ̄i1 ·...·φir φ̄ir=
〈
↑⊗rφ, ↑⊗rφ̄

〉
, (4)

where X =(↑⊗rφ) is defined as Xi1...ir =φi1 ·...·φir .

4 PROPOSED APPROACH

Below, we formulate the problem of action recognition from 3D
skeleton sequences, which precedes an exposition of our two
kernel formulations for describing actions, followed by their tensor
reformulations through kernel linearization. We also introduce
Eigenvalue Power Normalization and our improved kernels used

(a) (b)

Fig. 1: Figure 1a illustrates the notion of tensors, their order and
modes. Figure 1b illustrates the matrix-vector order outer-product.

for action recognition based on skeletons and/or classifier scores
obtained from videos passed via CNNs.

4.1 Statistical Motivation
Before we outline our higher-order tensor representations, be-
low we motivate the use of higher-order statistics. To compare
skeleton sequences/videos, we want to capture distribution of
local features/descriptors per sequence e.g., body joints or re-
ceptive fields in CNN. The characteristic function ϕΦ(ω) =
Eφ∼Φ

(
exp(iωTφ)

)
describes the probability density fΦ(φ) of

a skeleton sequence/video (local features/descriptors φ∼Φ).

Taylor expansion of the characteristic function per sequence is:

Eφ∼Φ
(∞∑
r=0

ir

r!
〈φ,ω〉r

)
≈ 1

N

N∑
n=0

∞∑
r=0

ir

r!
〈↑⊗rφn, ↑⊗rω〉(5)

=
∞∑
r=0

ir

r!

〈 1

N

N∑
n=0

↑⊗rφn, ↑⊗rω
〉

=
∞∑
r=0

〈
X (r),

ir

r!
↑⊗rω

〉
.

Symbol X (r) = 1
N

N∑
n=0
↑⊗rφn defines a tensor descriptor

while i is the imaginary number. In principle, with infinite data
and infinite moments, one can fully capture fΦ(φ) which is
intractable. In practice, third-order moments work well in what
follows while second-order moments are somewhat insufficient.

4.2 Problem Formulation
Suppose we are given a set of 3D human pose skeleton sequences,
each pose consisting of J body-keypoints. Further, to simplify our
notations, we assume each sequence consists of N skeletons, one
per frame1. We define such a pose sequence Π as:

Π =
{
xis ∈ R3, i ∈ IJ , s ∈ IN

}
. (6)

Further, let each such a sequence Π be associated with one of
K action class labels ` ∈ IK . Our goal is to use the skeleton
sequence Π and generate an action descriptor for this sequence
that can be used in a classifier for recognizing the action class. In
what follows, we will present two such action descriptors, namely
(i) sequence compatibility kernel and (ii) dynamics compatibility
kernel, which are formulated using kernel linearization and tensor
algebra theories. We present both these kernel formulations next.

4.3 Sequence Compatibility Kernel
As alluded to earlier, the main idea of this kernel is to measure
the compatibility between two action sequences in terms of the
similarity between their skeletons and their temporal order. To
this end, we assume each skeleton is centered with respect to

1We assume that all sequences have N frames for simplification of
presentation. Our formulations are applicable to sequences of arbitrary lengths
e.g., M and N . Thus, we apply in practice Gσ3 (

s
M
− t
N
) in Eq. (7).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 4

B

G :

A

1 2 3

(a)

A

B

G :
s

t

1 2 3

(b) (c)

Fig. 2: Figures 2a and 2b show how SCK works – kernel Gσ2 compares exhaustively e.g. hand-related joint i for every frame in sequence A
with every frame in sequence B. Kernel Gσ3 compares exhaustively the frame indexes. Figure 2c shows this burden is avoided by linearization
– third-order statistics on feature maps φ(xis) and z(s/N) for joint i are captured in tensor X i and whitened by EPN to obtain Vi which are
concatenated over i=1, ..., J to represent a sequence. The final sequence tensors are vectorized per video by ‘vec’ and fed to an SVM.

Fig. 3: Order r statistics from Eq. (7) can be understood by studying
the linearization in Eq. (10). For a given joint i at time s/N
(normalized frame number), we embed a 3D joint coordinate xis
(all centered w.r.t. hip) via function φ(·) into a non-linear Hilbert
space representing an RBF kernel according to Eq. (2). Similarly, we
embed the time s/N via function z(·) (also by Eq. (2)). Finally, ⊗r
performs the third-order outer-product on concatenated embeddings
aggregated next over frames s (note

∑
s). The interpretation: the

Gaussians ‘soft-divide’ the the Cartesian coordinate system along x, y,
z direction, resp., and time s/N . Thus, triplets (x, y, z), (x, y, s/N),
(x, z, s/N) and (y, z, s/N) assigned into such a ‘soft-divided’ space
capture locally three-way occurrences. They factor out one spatial (or
time) variable at a time (note invariance to such a variable).

one of the body-joints (say, hip). Suppose we are given two such
sequencesΠA andΠB , each with J joints, andN frames. Further,
let xis∈R3 and yjt∈R3 correspond to the body-joint coordinates
of ΠA and ΠB , respectively.

We define our sequence compatibility kernel (SCK) between
ΠA and ΠB as1: KS(ΠA, ΠB) = (7)
1

Λ

∑
(i,s)∈J

∑
(j,t)∈J

Gσ1
(i−j)

(
β1Gσ2

(xis−yjt)+β2Gσ3
(
s− t
N

)
)r
.

Symbol Λ is a normalization constant and J = IJ × IN . As is
clear, this kernel involves three different compatibility subkernels,
namely (i) Gσ1

, capturing the compatibility between joint-types i
and j, (ii)Gσ2

, capturing the compatibility between joint locations
x and y, and (iii) Gσ3

, measuring the temporal alignment of
two poses in two sequences. We also introduce weighting factors
β1, β2 ≥ 0 that adjust the importance of the body-joint compati-
bility against the temporal alignment, where β1 +β2 = 1. Figures
2a and 2b illustrate how this kernel works. It might come as a
surprise that we use kernel Gσ1

. Note that our skeletons may be
noisy and there is a possibility that some keypoints are detected
incorrectly (for example, elbows and wrists). Thus, this kernel
allows incorporating a degree of uncertainty into the alignment of
such joints. To simplify our formulation, in this paper, we will
assume that such errors are absent from our skeletons, and thus
Gσ1

(i − j) = δ(i − j). Furthermore, standard deviations σ2

and σ3 control the joint-coordinate selectivity and temporal shift-

invariance, respectively. That is, for σ3 → 0, two sequences will
have to match perfectly in the temporal sense. For σ3 → ∞, the
algorithm is invariant to any permutations of the frames. As will be
clear in the sequel, parameter r determines the order of statistics
of our kernel (we use r = 3).

Next, we present linearization of our kernel using the method
from Sections 3.2, 3.3, and Eq. (3), so that kernel Gσ2

(x− y) ≈
φ(x)Tφ(y) (see note2) while Gσ3

(s−tN) ≈ z(s/N)T z(t/N)
(see note3). With these approximations and simplification to Gσ1

described above, we rewrite our sequence compatibility kernel as:

KS(ΠA, ΠB) ≈

1

Λ

∑
i∈IJ

∑
s∈IN

∑
t∈IN

[√β1 φ(xis), (see note2)√
β2 z(s/N), (see note3)

]T
·
[√

β1φ(yit)√
β2z(t/N)

]r
(8)

=
1

Λ

∑
i∈IJ

∑
s∈IN

∑
t∈IN

〈
↑⊗r

[√
β1 φ(xis)√
β2 z(s/N)

]
, ↑⊗r

[√
β1φ(yit)√
β2z(t/N)

]〉
(9)

=
∑
i∈IJ

〈
1√
Λ

∑
s∈IN

↑⊗r
[√

β1 φ(xis)√
β2z(s/N)

]
,

1√
Λ

∑
t∈IN

↑⊗r
[√

β1φ(yit)√
β2z(t/N)

]〉
.

(10)

Expansion of Eq. (8) into Eq. (9) simply follows the notion
of equivalence between the polynomial kernels and tensor outer-
products as detailed in Eq. (4). Similarly, the summations in Eq.
(9) can be absorbed into the dot-product in Eq. (10) because the
inner-product is a linear operation in each of its arguments e.g.,
〈v1+v2, v̄〉 = 〈v1, v̄〉+ 〈v2, v̄〉. The physical meaning of the
above equation is detailed in Figure 3. While the first-, second-
and third-order outer-products are connected to the sample mean,
covariance and co-skewness of features, our tensors are not mere
counts of features, as explained next. As is clear, (10) expresses
KS(ΠA, ΠB) as a sum of inner-products on third-order tensors
(r = 3), as shown in Figure 2c. While, using the dot-product as the
inner-product is an option, other alternatives for tensors of order
r ≥ 2 can act on their spectrum, leading to better representations.

2In practice, Cartesian coordinates of joints x,y∈R3 are fed into a kernel.
Thus, in place of kernel Gσ2 , we use the sum kernel G

′
σ2

(x−y)=Gσ2 (x1−
y1)+Gσ2 (x2−y2)+Gσ2 (x3−y3) whose approximation is given as: G

′
σ2

(x−
y) ≈ [φ(x1; {ζi}i∈IZ2

);φ(x2; {ζi}i∈IZ2
);φ(x3; {ζi}i∈IZ2

)]T [φ(y1;

{ζi}i∈IZ2
);φ(y2; {ζi}i∈IZ2

);φ(y3; {ζi}i∈IZ2
)] but for simplicity we

refer to it in our formulations by its generic form Gσ2 (x−y)≈φ(x)Tφ(y)
because we can define φ(x)=[φ(x1);φ(x2);φ(x3)].

3Feature maps z(·)≡φ(·) from Eq. (2). We simply write z rather than φ
to denote these feat. maps as they encode the time/frame number (c.f . the body
joints). Note that z(·; {ζ′i}i∈IZ3

) uses Z3 pivots {ζ′i}i∈IZ3
(see Figure 3).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 5

An example is the so-called burstiness [81], which is a commonly
encountered property that a given feature appears more/less often
in a sequence than a statistically independent model predicts.
Robust descriptors must be invariant w.r.t. the length of actions
e.g., a prolonged hand waving represents the same action as a short
hand wave. Eigenvalue Power Normalization (EPN) [4] suppresses
burstiness by acting on higher-order statistics (see Fig. 2c). By
incorporating EPN, we generalize (10) as:

K∗S(ΠA, ΠB)=
∑
i∈IJ

〈
G

 1√
Λ

∑
s∈IN

↑⊗r
[√

β1φ(xis)√
β2z(s/N)

],
G

 1√
Λ

∑
t∈IN

↑⊗r
[√

β1φ(yit)√
β2z(t/N)

]〉, (11)

where the operator G performs EPN by applying power normaliza-
tion to the spectrum of the third-order tensor (by taking the higher-
order SVD). Note that in general K∗S(ΠA, ΠB) 6≈KS(ΠA, ΠB)
as G is intended to manipulate the spectrum of X .

The final representation for linearized SCK becomes:

Vi=G(X i), where X i=
1√
Λ

∑
s∈IN

↑⊗r
[√

β1 φ(xis)√
β2z(s/N)

]
. (12)

We replace the sum over the body-joint indexes in (11) by
concatenating Vi in (12) along the fourth tensor mode, thus
defining V =

[
Vi

]⊕4

i∈IJ
. Suppose VA and VB are the cor-

responding fourth order tensors for ΠA and ΠB respectively.
Then, we obtain:

K∗S(ΠA, ΠB) = 〈VA,VB〉 . (13)

Note that tensors X have the following properties: (i) super-
symmetry X i,j,k =X π(i,j,k) for indexes i, j, k and their permu-
tation given by π, ∀π, and (ii) positive semi-definiteness of every
slice, that is, X :,:,s∈Sd+, for s∈Id. Thus, we use only the upper-
simplices of Vi which consist of

(d+r−1
r

)
coefficients (which is

the total size of our final representation times the number of body-
joints) rather than dr, where d is the side-dimension of Vi i.e.,
d= 3Z2 +Z3 (see notes2,3), and Z2 and Z3 are the numbers of
pivots used in the approximation of Gσ2

and Gσ3
(see notes2,3).

Next, we pass tensors X via (i) slice-wise EPN (sEPN)
operator or (ii) HOSVD-based tensor whitening EPN (tEPN) [4].
sEPN is faster but tEPN uses the entire tensor spectrum, thus being
more accurate. The slice-wise EPN uses the Power-Euclidean dist.
for rising matrices, slices of tensor tensor X , to the power of γ.
Power norm. and re-stacking slices along the third mode yields:

G(X)=[X γ
:,:,s]

⊕3

s∈Id , for 0< γ≤1. (14)

We note that G(X) preserves listed earlier properties of tensors X
and it forms our final tensors V for the action sequence.

The HOSVD-based tensor whitening EPN, proposed in [4], is
defined by the following operator G:

(E;A1, ...,Ar) = HOSVD(X), (15)

Ê = Sgn(E) |E|γ,
(

generally Ê= Ĝ(E)
)

(16)

V̂ = ((Ê ×1A1) ...)×rAr,,
(

think V̂ = X
1
2

)
(17)

G(X) = Sgn(V̂) |V̂ |γ∗. (18)

In the above equations, we distinguish the core tensor E , its power-
normalized variant Ê with factor weights evened out by rising

them to the power 0<γ≤1, singular vector matrices A1, ...,Ar

and operation ×r which is the so-called tensor-product in mode r.
As our tensors X are super-symmetric, we note that A1 =

A2 = ...=Ar . However, the kernel which is proposed in Section
4.4 leads to a non-symmetric tensor representation. We refer the
reader to paper [4] for the detailed description of the above steps.

Eq. (16) has a more general form Ê= Ĝ(E), where Ĝ can be any
power normalizing function [2]. In Sec. D, we derive the exact
interpretation of Eq. (15-18) for Ĝ=Sgn(E) (1− (1− |E|)N̄)
for which Sgn(E) |E|γ is an approximation [2]. We prove in
Sec. D that EPN performs in fact a spectral detection of higher-
order occurrences of features, the base of fine-grained systems
[1, 2]. Figure 9 illustrates details of such a spectral detection.

4.4 Dynamics Compatibility Kernel
The SCK kernel that we described above captures the inter-
sequence alignment, whereas the intra-sequence spatio-temporal
dynamics is lost. Thus, we propose a novel dynamics compatibility
kernel (DCK). In what follows, we use the absolute coordinates of
the joints in our kernel and follow notations from the prev. section.

DCK for two action sequences ΠA and ΠB is defined as:
KD(ΠA, ΠB) =

1

Λ

∑
(i,s)∈J,

(i′,s′)∈J,
i′6=i,s′6=s

∑
(j,t)∈J,
(j′,t′)∈J ,
j′6=j,t′6=t

G′σ′1(i−j, i
′−j′)Gσ′2((xis−xi′s′)−(yjt−yj′t′)) ·

·G′σ′3(
s−t
N

,
s′−t′
N

)G′σ′4(s−s′, t−t′). (19)

In contrast to SCK in (7), the DCK kernel uses the intra-
sequence joint differences, thus capturing the dynamics, which
is then compared against dynamics of other sequences.

Figures 4a-4c depict schematically how DCK captures co-
occurrences. As in SCK, the first kernel, G′σ′1 , captures the sensor
uncertainty in body-keypoint detection, and is assumed to be a
delta function in this paper. The second kernel, Gσ′2 , models
the spatio-temporal co-occurrences of the body-joints. Temporal
alignment kernels, expressed as G′σ′3(α,β) = Gσ′3(α)Gσ′3(β),
encode temporal start- and end-points from (s, s′) and (t, t′).
Finally, Gσ′4 limits contributions of dynamics between temporal
points if they are distant from each other, i.e. if s′� s or t′� t
and σ′4 is small. Similarly to SCK, the standard deviations σ′2
and σ′3 control the selectivity over spatio-temporal dynamics of
body-joints and their temporal shift-invariance for the start and
end points, resp. As discussed for SCK, the practical extensions
from footnotes1,2,3 also apply to DCK e.g., the definition of z, the
pivot numbers Z2 and Z3 for Gσ′2 and Gσ′3 kernels.

Based on the above formulations, Section A shows that the
linearization of DCK admits the form:
KD(ΠA, ΠB) ≈ (20)∑

i∈IJ,
i′∈IJ:
i′6=i

〈
1√
Λ

∑
s∈IN,
s′∈IN:
s′6=s

Gσ′4(s−s′)
(
φ(xis−xi′s′)·z

(s
N

)T)↑⊗ z
(s′
N

)
,

1√
Λ

∑
t∈IN,
t′∈IN:
t′6=t

Gσ′4(t−t′)
(
φ(yit−yi′t′)·z

(t
N

)T)↑⊗ z
(t′
N

)〉
.

Equation (20) expresses KD(ΠA, ΠB) as a sum over inner-
products on third-order non-symmetric tensors (c.f. Section 4.3
where the proposed kernel results in an inner-product between
super-symmetric tensors). However, we can decompose each of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 6

I

II

B

G :

A

1 2 3

III

IV
V

I II

III IV
V

(a)

A
I II III IV V

B

G :

(b) (c)

Fig. 4: Figure 4a shows that kernel Gσ′2 in DCK captures spatio-temporal dynamics by measuring displacement vectors from any given
body-joint to remaining joints spatially- and temporally-wise (i.e. see dashed lines). Figure 4b shows that comparisons performed by Gσ′2 for
any selected two joints are performed all-against-all temporally-wise which is computationally expensive. Figure 4c shows the encoding steps
in the proposed linearization which is fastn. We collect all X ii′ for joints i≤ i′, whiten them by EPN to obtain Vii′ , concatenate, vectorize
them per video with ‘vec’ and fed to an SVM. We introduced color-coded body joints/frame numbers to show how we assemble a single X ii′ .

Fig. 5: Third-order statistics from Eq. (19) can be understood by
studying the linearization in Eq. (20). For a given pair of joints
i≤ i′ at times s/N and s′/N (normalized frame numbers), we embed
displacement vectors xis−xi′s′ of 3D joint coordinates xisand xi′s′
via function φ(·) into a non-linear Hilbert space representing an RBF
kernel according to Eq. (2). Similarly, we embed the starting and
ending times s/N and s′/N via function z(·) (also by Eq. (2)).
Finally, ⊗ performs the third-order outer-product on concatenated
displacement and time embeddings aggregated next over frames s
and s′ (note

∑
ss′). The interpretation: the Gaussians ‘soft-divide’ the

Cartesian coordinate system along x, y, z direction, resp., as well as
time direction (s/N and s′/N). We project displacements along x,
y, z directions of Cartesian coordinates and assign each projection to
Gaussians. Thus, triplets ([x; y; z], s, s′) assigned into such a ‘soft-
divided’ space capture locally displacements of pairs of joints on the
time grid (3-way soft-histogram). For DCK⊕ in Section 4.6 we use
velocity vectors xis−xi′s′

max(1,|s′−s|) (c.f . displacement vectors) with short-
and long-term estimates depending on s′−s (3-way soft-histogram of
short- and long-term speeds).

these tensors with a variant of EPN, which involves Higher Order
Singular Value Decomposition (HOSVD), into factors stored in
the so-called core tensor, and equalize the contributions of these
factors to prevent bursts in the spatio-temporal co-occurrence
dynamics of actions. For example, consider that a long hand
wave versus a short hand wave yield different temporal statistics,
that is, the prolonged action results in bursts. However, the final
representation described below becomes invariant to bursts.

The final representation for linearized DCK with a non-linear
operator G introduced into Eq. (20) to prevent burstiness be-
comes: Vii′=G(X ii′), where (21)

X ii′=
1√
Λ

∑
s,s′∈IN :s′6=s

Gσ′4(s−s′)
(
φ(xis−xi′s′)·z

(s
N

)T)↑⊗ z
(s′
N

)
.

The summation over pairs of body-joint indexes in (20) is equiv-
alent to the concatenation of Vii′ from (21) along the fourth
mode. Thus, we obtain tensor representations

[
Vii′

]⊕4

i>i′: i,i′∈IJ
for sequence ΠA and

[
V̄ii′

]⊕4

i>i′: i,i′∈IJ
for sequence ΠB .

The physical meaning of Eq. (21) is detailed in Figure 5. The
dot-product can be now applied between these representations to
compare them. Tensors X in (21) are non-symmetric. Thus, for
the operator G, we choose the HOSVD-based tensor whitening
EPN, that is, tEPN defined in Eq. (15-18).

4.5 Sequence Compatibility Kernel ‘Plus’ (SCK⊕)
Below, we extend the SCK formulation from Section 4.3 to
aggregate over multiple subsequences extracted from the input
sequence. Intuitively, this process is an equivalent of extracting
local descriptors from images to attain so-called shift-invariance
to the object location. As it is unlikely that relevant motion patterns
stretch throughout a sequence, a specific pattern associated with
some action classes may appear in one/few subsequences. More-
over, in what follows next, we will allow the aggregation to run
over multiple modalities q∈IQ e.g., we use 3D body-joints and/or
frame-wise CNN classification scores from RGB videos and/or
optical flow. Thus, we can define our multimodal pose sequence
Π as:

Π =
{
x

(q)
is ∈ RWq , i ∈ IJ , s ∈ IM , q ∈ IQ

}
, (22)

where W1 =3, J is the total number of body-joints, Wq for q>1
equals the size of modality q other than body-joints. Note that if
modality q > 1 is global rather than per-joint specified, we can
replicate it e.g., x

(q)
1s = ...= x

(q)
Js .

SCK⊕ on a pair of sequences ΠA and ΠB of length M and N
is defined as:

KS⊕ (ΠA, ΠB) = (23)
1

Λ

∑
i∈IJ

∑
τ∈PA
τ′∈PB

∑
u∈Uτ
u′∈Uτ′

∑
s∈Sτ
t∈Sτ′

(∑
q∈IQ

β
(q)
1 G

σ
(q)
2

(
x
(q)
i,u+s − y

(q)
i,u′+t

)
+

β2Gσ3 (f(s,Sτ)−f(t,Sτ′))+
β3Gσ4 (f(u,U

A
τ)−f(u′,UBτ′))+

β4Gσ5 (f(τ,PA)−f(τ
′,PB))

)r
.

Symbols PA and PB denote subsequence lengths, PA=PB =P
is a possible assertion to make, so that i.e. P={8, 10, 12, ..., 20}.
Moreover, UAτ and UBτ ′ are sets of all positions in sequences πA
and πB for subsequences of lengths τ and τ ′, respectively, i.e., if
N = 100 and τ = 20 then UA20 = {1, 3, 5, ..., 79} is an example
of a possible choice. Furthermore, Sτ and Sτ ′ are sets of all
sampling positions in subsequences of lengths τ and τ ′, i.e., if
τ = 20 then S20 = {0, 1, 2, ..., 19} is an example of a possible
choice. We define a function f(s,S) = s−Smin

Smax−πmin which
performs normalization on s w.r.t. set π, and Smin and Smax
denote the smallest and largest element of set S , respectively.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 7

Moreover, normalizations f(u,U) and f(τ,P) are defined by
analogy, Λ=ΛA·ΛB=(|IJ |·|PA|·|UAτ |·|Sτ |)·(|IJ |·|PB |·|UBτ |·|Sτ ′|).
For simplicity, we do not model the within-sequence similarity
between the body joints in contrast to Eq. (7), thus we skip
Gσ1

. Kernels G
σ
(i)
2

capture the compatibility between body-
joint locations x and y in a subsequence. Kernel Gσ3 measures
the temporal alignment of two pose snippets in the given two
subsequences. Kernel Gσ4 measures the temporal alignment of
two subsequences in two sequences. Lastly, Gσ5 measures the
match of two subsequence lengths. Weight factors β

(q)
1 ≥ 0

adjust the importance of each modality q ∈ IQ. Weight β2 ≥ 0
is the importance of the temporal alignment of snippets within
subsequences. Weight β3 ≥ 0 is the importance of the temporal
alignment of subsequences within sequences. Weight β4 ≥ 0 is
the importance of the match of two subsequence lengths. We let∑
qβ

(q)
1 +β2 +β3 +β4 = 1. Parameters σ(q)

2 in G
σ
(q)
2

and β(q)
1

are set per modality e.g., for the 3D body-joints we chose G
σ
(1)
2

to be an RBF kernel, for frame-wise class predictions obtained
from CNNs applied on (i) RGB and (ii) optical flow frames we
choose G

σ
(2)
2

and G
σ
(3)
2

to be linear kernels (with no parameters).
As previously, r denotes the order of captured statistics i.e., r=3.

Below, we present the process of linearization of our ker-
nel which follows the reasoning from Section 3.2 and Eq. (3).
However, we feel it is interesting to show how various kernel
components translate to various statistics encoded by the tensor:

i.G
σ
(q)
2

(x−y) ≈ φ(q)(x)Tφ(q)(y) (see note2) and, in order to

reflect the choice of par. σ(q)
2 for index q, we write φ(q),

ii.Gσ3(f(s,Sτ)−f(t,Sτ′)) ≈ z′(f(s,Sτ)T z′(f(t,Sτ′)),
iii.Gσ4(f(u,Uτ)−f(u′,Uτ′)) ≈ z′′(f(u,Uτ)T z′′(f(u′,Uτ′)),
iv.Gσ5(f(τ,PA)−f(τ ′,PB)) ≈ z′′′(f(τ,PA)T z′′′(f(τ ′,PB)).

With these approximations at hand, we rewrite our sequence
compatibility kernel ‘plus’ as:

KS⊕ (ΠA, ΠB) ≈

1

Λ

∑
i∈IJ

∑
τ∈PA
τ′∈PB

∑
u∈Uτ
u′∈Uτ′

∑
s∈Sτ
t∈Sτ′

√
β
(1)
1 φ(x

(1)
i,u+s)

...√
β
(Q)
1 φ(x

(Q)
i,u+s)√

β2 z′(f(s,Sτ))√
β3 z′′(f(u,Uτ))√
β4 z′′′(f(τ,PA))

T

·

√
β
(1)
1 φ(y

(1)
i,u′+t)

...√
β
(Q)
1 φ(y

(Q)
i,u′+t)√

β2z′(f(t,Sτ′))√
β3z′′(f(u′,Uτ′))√
β4z′′′(f(τ ′,PB))

r

=

(24)

∑
i∈IJ

〈
G

1

ΛA

∑
τ∈PA

∑
u∈Uτ

∑
s∈Sτ

↑⊗r

√
β
(1)
1 φ(x

(1)
i,u+s)

...√
β
(Q)
1 φ(x

(Q)
i,u+s)√

β2 z′(f(s,Sτ))√
β3 z′′(f(u,Uτ))√
β4 z′′′(f(τ,PA))

, (25)

G

1

ΛB

∑
τ′∈PB

∑
u′∈Uτ′

∑
t∈Sτ′

↑⊗r

√
β
(1)
1 φ(y

(1)
i,u′+t)

...√
β
(Q)
1 φ(y

(Q)
i,u′+t)√

β2z′(f(t,Sτ′))√
β3z′′(f(u′,Uτ′))√
β4z′′′(f(τ ′,PB))

〉
.

In the above equation, we set G(X) = X for Eq. (25) to be
equivalent to Eq. (24). However, similarly to considerations in
Section 4.3, a commonly encountered adversity in aggregated
representations, the burstiness, requires some suppression. To this
end, we let operator G in Eq. (25) perform tEPN on the spectrum
of the third-order tensor.

The final representation for linearized SCK⊕ becomes:

Vi=G(X i), where X i=
1

ΛA

∑
τ∈PA

∑
u∈Uτ

∑
s∈Sτ

↑⊗r

√
β
(1)
1 φ(x

(1)
i,u+s)

...√
β
(Q)
1 φ(x

(Q)
i,u+s)√

β2 z′(f(s,Sτ))√
β3 z′′(f(u,Uτ))√
β4 z′′′(f(τ,PA))

.

(26)

We can further replace the summation over the body-joint
indexes in (25) by concatenating Vi in (26) along the fourth
tensor mode, thus defining V =

[
Vi

]⊕4

i∈IJ
. Suppose VA and

VB are the corresponding fourth order tensors for ΠA and ΠB ,
then we have:

K∗S⊕(ΠA, ΠB) = 〈VA,VB〉 . (27)

Note that in general K∗S⊕(ΠA, ΠB) 6≈KS⊕(ΠA, ΠB) as G
manipulates the spectrum of X . Finally, for our final represen-
tation, we use only the upper-simplices of Vi which consist of(d+r−1

r

)
coefficients each, rather than dr, where d is the side-

dimension of Vi i.e., d = 3Z
(1)
2 + ...+ Z

(Q)
2 +Z3 +Z4 +Z5

(see notes2,3), and Z(1)
2 , ..., Z

(Q)
2 and Z3, Z4, Z5 are the numbers

of pivots used in the approximation of G
σ
(1)
2
, ..., G

σ
(Q)
2

and
Gσ3 , Gσ4 , Gσ5 (see notes2,3).

4.6 Dynamics Compatibility Kernel ‘Plus’ (DCK⊕)
Below, we apply the aggregation over subsequences to our DCK
kernel. We follow the same steps as for SCK⊕ (Section 4.5)
except that our subsequences for DCK⊕ have a fixed length. For
a pair of sequences ΠA and ΠB of length M and N , we have:

KD⊕(ΠA, ΠB) = (28)
1

Λ′

∑
u,u′∈Uτ

KD(Π ′A,τ,u, Π
′
B,τ,u′)Gσ4(f(u,UAτ)−f(u′,UBτ)),

where τ is a length of subsequences. KD(Π ′A,τ,u, ΠB′,τ,u′) is
defined in Eq. (19). However, we use velocity vectors xis−xi′s′

max(1,|s′−s|)
(c.f . displacement vectors in DCK) with short- and long-term
estimates depending on s′−s. Figure 5 provides an interpretation of
this kernel.KD(Π ′A,τ,u, ΠB′,τ,u′) is evaluated over subsequences
Π ′A,τ,u and Π ′B,τ,u′ sampled from ΠA and ΠB according to sets
of sampling coordinates Sτ,u = {Sτ}+u and Sτ,u′= {Sτ′}+u′

of length τ which are shifted by locations u and u′ according
to Uτ . Lastly, Λ′ = |UAτ | · |UBτ |. The remaining symbols follow
definitions in Section 4.5. Kernel in Eq. (28) is then linearized in
the similar manner to Eq. (19) which results in linearization similar
to Eq. (21) but containing an additional mode corresponding to
linearization of kernel Gσ4

. We skip this derivation for brevity.

5 EXPERIMENTS

Below, we present experiments on our models on seven popular
datasets. For datasets based on 3D skeletons, we use (i) the
UTKinect-Action [31], (ii) Florence3D-Action [32], (iii) MSR-
Action3D [33], and (iv) Kinetics [36] (where stated). For datasets
based on RGB frames, we use (v) the fine-grained MPII Cooking
Activities [25] and (vi) HMDB-51 [34] datasets. For experiments
on the 3D skeletons fused with RGB frames, we use (vii) large
scale NTU-RGBD [35] dataset. We also evaluate the influence of
various hyper-parameters, such as the number of pivots Z used for
linearizing the body-joint and temporal kernels, and the impact of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 8

Eigenvalue Power Normalization (we vary the factor equalization).
We evaluate our older SCK and DCK kernels, and their newer
counterparts SCK⊕ and DCK⊕. For skeletons, we feed them
directly to our kernel representations while RGB-based datasets
are firstly encoded by the two-stream CNN [17] or the I3D [28].

5.1 Datasets
UTKinect-Action [31] consists of 10 actions performed twice by
10 different subjects, and has 199 action sequences. The dataset
provides 3D coordinate annotations of 20 body-joints for every
frame. The dataset was captured with a stationary Kinect sensor
and contains significant viewpoint and intra-class variations.
Florence3D-Action [32] dataset consists of 9 actions performed
2–3× by 10 different subjects and it has 215 action sequences. 3D
coordinate annotations of 15 body-joints captured with a Kinect
sensor are provided. Significant intra-class variations are present
i.e., the same action articulated with the left/right hand, and actions
like drinking/performing a phone call can be seen as fine-grained.
MSR-Action3D [33] dataset is comprised of 20 actions performed
2–3× by 10 different subjects and it has 567 action sequences. 3D
coordinates of 20 body-joints captured by a Kinect-like depth sen-
sor are provided. MSR-Action3D has strong inter-class similarity.

In the above datasets, we use the cross-subject test setting
(unless stated otherwise), in which half of the subjects are used for
training and the remaining half for testing. Similarly, we divide the
training set into two halves for the purpose of training/validation.
NTU-RGBD [35] is by far the largest 3D skeleton-based video
action recognition dataset. It has 56880 video sequences across 60
classes, 40 subjects, and 80 views. The videos have on average
70 frames and consist of people performing various actions. Each
frame is annotated with 25 human skeletal keypoints (some videos
have multiple subjects). Two evaluation protocols are used for
this dataset, namely, cross-subject and cross-view evaluation. This
dataset can be considered as having many fine-grained classes e.g.,
make a phone call, playing with phone, punching other person,
pushing other person, pat on back of other person, etc.
MPII Cooking Activities [25] dataset consists of high-resolution
videos of cooking activities/people cooking various dishes. There
are 64 distinct activities spread across 3748 video clips and one
background activity (1861 clips). Activities include coarse actions
e.g., opening refrigerator, and fine-grained actions e.g., peel, slice,
cut apart (see Figure 6). This dataset is challenging due to (i)
unbalanced action classes, (ii) significant intra-class differences
(each subject cooks according to their own style). We use the
mean Average Precision (mAP) over 7-fold cross-validation.
HMDB-51 [34] dataset is a popular video benchmark for human
action recognition, consisting of 6766 Internet videos over 51
classes. Each video has about 20–1000 frames. We report the
average classification accuracy on standard three-fold splits.
Kinetics [36] contains ∼300000 clips from YouTube which cover
400 human action classes, ranging from daily activities, sports
scenes, to complex interactions. Each clip is ∼10 seconds long.

5.2 Experimental Setup
For our experiments, we distinguish four configurations: (i) for
UTKinect-Action, Florence3D-Action and MSR-Action3D that
provide 3D body-joints, we feed sequences of 3D body-joints to
our kernel(s), (ii) for MPII Cooking Activities, HMDB-51 and
NTU-RGBD that provide RGB frames, we train a two-stream
ResNet-152 model (as in [17]) taking RGB frames (in the spatial

Fig. 6: Fine-grained action instances (MPII Cooking Activities [25])
from two different action categories: cut-in (left) and slicing (right).

stream) and a stack of optical flow frames (in the temporal stream)
as input to obtain classification scores per frame per stream
which are then passed to our kernel, (iii) for NTU-RGBD which
contains both 3D body-joints and RGB frames, we investigate both
such inputs separately as well as their combination, and (iv) for
Kinetics, we use skeletons and combine ST-GCN with SCK.

For the sequence compatibility kernel on sequences of 3D
body-joints, we first normalized all body-keypoints with respect to
the hip joints across frames, as indicated in Section 4.3. We also
normalized lengths of all body-parts w.r.t. to a reference skeleton.
This setup follows pre-processing of [12]. For our dynamics com-
patibility kernel, we use unnormalized body-joints and assume that
the displacements of body-joint coordinates across frames capture
their temporal evolution implicitly. For the sequence compatibility
kernel on classifier scores, we take the scores before they are
passed through the logistic function and we apply a rectifier.
CNN Training. To extract features with CNN, we train a two-
stream ResNet-152 model [17] taking RGB frames (in the spatial
stream) and a stack of optical flow frames (in the temporal
stream) from a given training split as input. For optical flow,
we use the Large Displacement Optical Flow (LDOF) [82]. We
use the classifier predictions from each stream as inputs to our
kernels. The two streams of the CNN are trained separately on the
respective input modalities against a softmax cross-entropy loss.
We simply follow the standard training protocols from [17]. For
fine-tuning, we used a fixed learning rate of 1e−4 and a momentum
of 0.9. For the MPII Cooking Activities dataset, we used the
sequences from the training set for training the CNNs (1992
sequences) and those from the validation set (615 sequences)
to check for overfitting. For HMDB-51, we use three standard
splits provided with the dataset. For NTU-RGBD dataset in the
cross-subject evaluation, the training and testing sets have 40320
and 16560 samples, respectively. For NTU-RGBD dataset in the
cross-view evaluation, the training and testing sets have 37920
and 18960 samples, respectively. We use 70% of the training set
for training and 30% for validation. To train SVM, we simply
vectorize our tensors and set c=1e−2.

To stay competitive w.r.t. the state of the art, we additionally
use two newer backbones such as (i) Spatial Temporal Graph Con-
volutional Network (ST-GCN) [75] and (ii) Two-Stream Inflated
3D ConvNet (I3D) [28]. For ST-GCN, we train it on skeletal
sequences from NTU and Kinetics [36] datasets following the
standard protocols. For Kinetics, we follow approach [36] and
use skeletons extracted with OpenPose [5]. Finally, we combine
our vectorized tensors from SCK or SCK⊕ with the output of
the last layer of ST-GCN preceding the classifier, and feed such a
representation into the cross-entropy loss. As SCK is a shallow
approach, we expect it to be highly complementary with ST-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 9

σ

ac
cu

rr
ac

y
(%

)

0 0.5 1 1.5 2
80

82

84

86

88

90

92

94

σ
2
 (body−joints subker.)

σ
3
 (temporal subker.)

(a)

K

ac
cu

rr
ac

y
(%

)

2 4 6 8 10 12 14 16 18 20
92

92.2

92.4

92.6

92.8

93

Z
2
 (body−joints subker.)

Z
3
 (temporal subker.)

(b)

γ

ac
cu

ra
cy

 (
%

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
89

90

91

92

93

γ (SCK)

(c)

γ

ac
cu

rr
ac

y
(%

)

0.4 0.5 0.6 0.7 0.8 0.9 1
87

88

89

90

91

92

93

γ (DCK)

(d)

Fig. 7: Figure 7a illustrates the classification accuracy on Florence3d-Action for the sequence compatibility kernel when varying radii σ2

(body-joints subkernel) and σ3 (temporal subkernel). Figure 7b evaluates behavior of SCK w.r.t. the number of pivots Z2 and Z3. Figure 7c
demonstrates effectiveness of our slice-wise Eigenvalue Power Normalization in tackling burstiness by varying parameter γ. Figure 7d shows
effectiveness of equalizing the factors in non-symmetric tensor representation by HOSVD Eigenvalue Power Normalization by varying γ.

1
2

3

4

5

6

7

8

910

11

12

13

14

15

A B C D E
6,9 1,6,9 6,9,12,15 4,6,7,9,11,14 4,6,7,9,
F G H I 11,12,

4-15 1,4-15 1,2,4-15 1-15 14,15

(a)

joint config.

ac
cu

rr
ac

y
(%

)

A B C D E F G H I
88

89

90

91

92

93

(b)

Fig. 8: Figure 8a enumerates the body-joints in the Florence3D-
Action dataset. The table below lists subsets A-I of the body-joints
used to build representations eval. in Figure 8b, which shows the
accuracy of our dynamics compatibility kernel w.r.t. these subsets.

GCN. For I3D network, we train it on subsequences extracted
from HMDB51 and MPII. We use RGB and optical flow (LDOF)
streams. We extract subsequences of length 48, 64, 80, 96 given
strides 1, 2 and 3. Then, subsequences shorter than 64 are lapped.
We put together all training subsequences of all lengths and all
strides, and we train RGB and LDOF I3D networks separately
with a learning rate 1e−4 halved every 10 epochs.
IDT Features. On HMDB-51 and MPII Cooking Activities, we
also report accuracy when our kernel is combined with dense
trajectories [83] encoded by Fisher Vectors [84].

5.3 Sequence compatibility kernel.

In this section, we first present experiments evaluating the influ-
ence of parameters σ2 and σ3 of kernels Gσ2

and Gσ3
which

control the degree of selectivity for the 3D body-joints and the
temporal shift invariance, respectively. See Section 4.3 for a full
definition of these parameters. Recall that kernels Gσ2

and Gσ3

are approximated via linearizations according to Eq. (1) and (3).
The quality of these approximations and the size of our final
tensor representations depend on the numbers Z2 and Z3 of pivots
chosen. See Section 3.2, Figure 3 and notes2,3 for details on pivots.
In our experiments, the pivots ζ are spaced uniformly within
interval [−1; 1] and [0; 1] for kernels Gσ2

and Gσ3
respectively.

Figures 7a and 7b present the results of this experiment on the
Florence3D-Action dataset. Figure 7a shows that the body-joint
compatibility subkernel Gσ2 requires a choice of σ2, which is
not too strict as specific body-joints (e.g., elbow) are expected to
repeat across sequences in similar locations due to zero-centering

w.r.t. hip. On the one hand, very small σ2 leads to poor general-
ization. On the other hand, very large σ2 allows big displacements
of the corresponding body-joints between sequences which results
in a poor discriminative power of this kernel. Furthermore, Figure
7a demonstrates that the range of σ3 for the temporal subkernel
for which we obtain very good performance is large. However,
as σ3 becomes very small or very large, extreme temporal selec-
tivity or full temporal invariance, respectively, result in a loss of
performance. For instance, σ3 =4 results in 91% accuracy only.

In Figure 7b, we show the performance of our SCK kernel
with respect to the number of pivots used for linearization. For the
body-joint compatibility subkernel Gσ2

, we see that Z2 =5 pivots
are sufficient to obtain good performance of 92.98% accuracy. We
have observed that this is consistent with the results on the valida-
tion set. Using more pivots, say Z2 = 20, deteriorates the results
slightly, suggesting overfitting. We make similar observations for
the temporal subkernel Gσ3

which demonstrates a good perfor-
mance for as few as Z3 =2 pivots. Such a small number of pivots
suggests that linearizing 1D variables and generating higher-order
co-occurrences, as described in Section 4.3, constitute on a simple,
robust, and effective linearization strategy.

Furthermore, Figure 7c demonstrates the effectiveness of our
slice-wise Eigenvalue Power Normalization described in Eq. (14).
When γ=1, the EPN functionality is absent. This results in a drop
of performance from 92.98% to 88.7% accuracy. This demon-
strates that statistically unpredictable bursts of actions described
by body-joints, such as long versus short hand waving, are indeed
undesirable. It is clear that in such cases, EPN is very effective,
as it deals with correlated bursts, e.g. co-occurring hand wave
and associated with it elbow and neck motion. For more details
regarding this concept, see [4]. For our further experiments, we
choose σ2 = 0.6, σ3 = 0.5, Z2 = 5, Z3 = 6, and γ = 0.36, as
dictated by cross-validation.

5.4 Dynamics compatibility kernel.

Below, we evaluate the influence of parameters of the DCK kernel.
Our experiments are based on the Florence3D-Action dataset. For
ablations, we present results on the test set as results on the
validation set match test results closely. As this kernel considers all
spatio-temporal co-occurrences of body-joints, we firstly evaluate
the impact of the joint subsets we select for generating DCK, as
not all body-joints need to be used for capturing actions.

Figure 8a enumerates all body-joints that describe every 3D
human skeleton on the Florence3D-Action dataset, whereas the
table underneath lists the proposed body-joint subsets A-I which

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 10

SCK DCK SCK+DCK
accuracy 92.98% 93.03% 92.77% 95.23%

size 26,565 9,450 16,920 43,485

SCK⊕ DCK⊕ SCK⊕ + DCK⊕
accuracy 96.50% 96.41% 97.45%

size 60,900 37,800 98,700

Bag-of-Poses 82.00% [32] Kendal Traj. 93.04% [85]
SE(3) 90.88% [12] Kernel+ResNet [86] 95.4%

TABLE 1: Evaluations of (top) SCK/DCK, (middle) our improved
SCK⊕ / DCK⊕, (bottom) the state of the art on Florence3D-Action.

SCK DCK SCK+DCK
accuracy 96.08% 97.5% 98.2%

size 40,480 16,920 57,400

SCK⊕ DCK⊕ SCK⊕ + DCK⊕
accuracy 98.50% 98.12% 99.2%

size 81,200 67,680 148,880

3D joints. hist. 90.92% [31] Kendal Traj. 97.39% [85]
SE(3) 97.08% [12] Second-order DA [86] 98.9%

TABLE 2: Evaluations of (top) SCK/DCK, (middle) our improved
SCK⊕ / DCK⊕ and (bottom) the state of the art on UTKinect-Action.

we use for computations of DCK. In Figure 8b, we plot the perfor-
mance of our DCK kernel for each subset. The plot shows that us-
ing two body-joints associated with the hands from Configuration-
A in the DCK kernel construction, we attain 88.32% accuracy
which highlights the informativeness of temporal dynamics.
Some body-joints may be noisy and thus detrimental to
recognition, and should not be selected for experiments e.g.,
Configuration-D, which includes six body-joints such as the
knees, elbows and hands, yields 93.03%, which outperforms
more complex configurations.

As Configuration-E includes eight body-joints such as the feet,
knees, elbows and hands, we choose it for our further experiments
as it represents a reasonable trade-off between performance and
size of representations. This configuration scores 92.77% accu-
racy. We see that if we utilize all the body-joints according to
Configuration-I, performance of 91.65% accuracy is still some-
what lower compared to 93.03% accuracy for Configuration-D
highlighting the issue of noisy body-joints.

In Figure 7d, we show the accuracy on our DCK kernel
when HOSVD factors underlying our non-symmetric tensors are
equalized by varying the EPN parameter γ. For γ = 1, EPN is
disabled, which leads to 90.49% accuracy only. For the optimal
value of γ = 0.85, the accuracy rises to 92.77% which indicates
the presence of the burstiness effect in temporal representations.

5.5 SCK and DCK vs. the state of the art.
Below, we compare the performance of our representations against
the state of the art. Along with comparing SCK and DCK, we
also explore the complementarity of these representations by
combining them via the so-called late fusion, that is, a simple
weighted concatenation of vectorized SCK and DCK.

On the Florence3D-Action dataset, we present our best results
in Table 1. Note that the model parameters for the evaluation was
selected by cross-validation. Linearizing a sequence compatibility
kernel using these parameters resulted in a tensor representation

SCK DCK SCK+DCK
acc., prot. [41] 90.72% 86.30% 91.45%
acc., prot. [33] 93.52% 91.71% 93.96%

size 40,480 16,920 57,400

SCK⊕ DCK⊕ SCK⊕ + DCK⊕
acc., prot. [41] 97.50% 90.03% 98.10%
acc., prot. [33] 98.12% 94.28% 98.62%

size 81,200 67,680 148,880

accuracy, protocol [41] accuracy, protocol [33]
Actionlets 88.20% [41] SE(3) 92.46% [12]
SE(3) 89.48% [12] Kendal Traj. 94.19% [85]

Kin. desc. 91.07% [87] Ker-RP-RBF 96.9% [47]

TABLE 3: Results of (top) SCK/DCK, (middle) our improved SCK⊕
/ DCK⊕ and (bottom) the state of the art on MSR-Action3D.

cross-subject cross-view
SCK (r=2) on 3D body-joints

64.08% 65.24%
SCK (no EPN) 65.37% 67.18%

SCK 69.20% 70.55%
SCK⊕ 72.82% 74.10%

SCK {on 3D body-joints
+ST-GCN

82.61% 89.52%
SCK⊕ 83.58% 90.84%

cross-subject cross-view
Two-stream+AP (ResNet-50) 74.4% 83.3%
Two-stream+MP (ResNet-50) 65.8% 58.7%

SCK⊕ on RGB frames (ResNet-152) 90.11% 93.62%

SCK⊕
{on 3D body-joints

+RGB frames (ResNet-152)
90.78% 94.15%

SCK⊕
{on 3D body-joints

+RGB frames+optical flow
(ResNet-152)

91.56% 94.75%

cross-subject cross-view
Second-order DA [86] (ResNet-50) 75.35% 79.30%
Frames + CNN [88] (VGG-19) 75.73% 79.62%
Clips + CNN + MTLN [88] (VGG-19) 79.57% 84.83%
VA-LSTM [89] 79.4% 87.6%
ST-GCN [75] 81.5% 88.3%
DSP [90] 81.6% 88.7%
Multi-scale CNN [91] (ResNet-101) 84.6% 92.1%
Multi-scale CNN [91] (ResNet-152) 85.0% 92.3%
Deep Bilinear [92] (ResNet-101) 85.4% 90.7%

TABLE 4: Results on our SCK and the improved SCK⊕ on (top)
skeleton sequences and (middle) two-stream networks. We also indi-
cate results on the baseline two-stream network with standard average
pooling (AP) and maximum pooling (MP). We indicate backbones in
parentheses. (bottom) The state of the art on NTU-RGBD.

of size 26, 565 dimensions4, and produced an accuracy of 92.98%
accuracy. As for DCK, our model used Configuration-E (described
in Figure 8a) resulting in a representation of dimensionality
16, 920, and achieved a performance of 92%. However, some-
what better results were attained by Configuration-D, that is,
92.27% accuracy for size of 9, 450. Combining SCK and DCK
in Configuration-E yields 95.23% accuracy, a 4.5% improvement
over the state of the art on this dataset, as listed in Table 1, which
highlights the complementary nature of SCK and DCK.

4This is the length of a vector per sequence after unfolding our tensor
represent./removing duplicate coefficients from the symmetries in the tensor.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 11

SCK+ST-GCN SCK⊕+ST-GCN ST-GCN
top-1 31.2% 31.8% 30.7%
top-5 53.7% 54.9% 52.8%

TABLE 5: SCK and SCK⊕ combined with ST-GCN vs. ST-GCN
[75] alone on Kinetics [36] skeletons extracted by OpenPose [5].

Action recognition results on the UTKinect-Action dataset are
presented in Table 2. For our experiments on this dataset, we kept
all the parameters the same as those used on the Florence3D
dataset. SCK and DCK representations yielded 96.08% and
97.5% accuracy, respectively. Combining SCK and DCK yielded
98.2% accuracy outperforming marginally a more complex ap-
proach [12] based on the Lie group algebra, dynamic time warping
and Fourier temporal pyramids.

In Table 3, we present our results on the MSR-Action3D
dataset. Conforming to the prior literature, we use two evaluation
protocols, that is, (i) the protocol described in actionlets [41], for
which the authors utilize the entire dataset with its 20 classes
during the training and evaluation, and (ii) approach of [33], for
which the authors divide the data into three subsets and report
the average in classification accuracy over these subsets. SCK
yields the state-of-the-art accuracy of 90.72% and 93.52% for
the two evaluation protocols, respectively. Combining SCK with
DCK outperforms other approaches listed in the table and yields
91.45% and 93.96% accuracy for the two protocols, respectively.

5.6 SCK⊕ and DCK⊕ vs. the state of the art.
Our extended SCK⊕ is trained with 3Z2 = 15, Z3 = Z4 = 5
and Z5 = 3 while DCK⊕ follows the same setting as DCK,
except that we introduce quantity Z6 = 4 which is the number
of pivots encoding the subsequence position within the sequence,
as dictated by Eq. (28). For the Florence3D-Action dataset, Ta-
ble 1 shows that aggregating over subsequences across various
scales results in SCK⊕ outperforming SCK by ∼3.5%, DCK⊕
outperforming DCK by ∼3.4% and the combined kernel SCK⊕
+ DCK⊕ outperforming SCK+DCK by ∼2.2%. Table 2 shows
the similar trend for the UTKinect-Action dataset, for which
SCK⊕ outperforms SCK by ∼2.4%, DCK⊕ outperforms DCK
by∼0.6% and the combined kernel SCK⊕ + DCK⊕ outperforms
SCK+DCK by ∼1.0%. Note that the results on UTKinect-Action
should be considered as already saturated. Furthermore, Table
3 shows that on MSR-Action3D, SCK⊕ outperforms SCK by
∼6.8%, DCK⊕ outperforms DCK by ∼3.7% and the combined
kernel SCK⊕ + DCK⊕ outperforms SCK+DCK by ∼7.5%.
Fine-grained Action Recognition. In what follows, we employ
NTU-RGBD, a partially fine-grained dataset, and MPII Cooking
Activities containing many fine-grained classes.

Our SCK⊕ kernel is designed to capture specific subsequences
of variable lengths. Kernels Gσ2

, ..., Gσ5
from Section 4.5

capture higher-order statistics of joint locations in subsequences,
the temporal alignment of pose snippets, the global alignment
of subsequences, and the match of subsequence lengths. SCK⊕
uses EPN in Eq. (15-18) which makes it act as a detector of
spectral higher-order occurrences. Thus, SCK⊕ addresses all
hallmarks of modern fine-grained recognition systems: it cap-
tures higher-order statistics describing visual contents/objects
and discarding burstiness [2] (co-occurrence detection).

Moreover, our SCK⊕ kernel captures higher-order occur-
rences of features representing spatio-temporal evolution of skele-

- +IDT +sec-ord
+sec-ord

+IDT
Two-stream+AP (VGG-19) 38.1% - - -
Two-stream+AP (ResNet-152)45.3% - - -
Subsequences+AP (I3D) 52.7% - - -
HOK [30] (VGG-16) 60.1% - 69.1% 73.1%
SCK⊕ (VGG-19) 70.1% - 74.0% 76.1%
SCK⊕ (ResNet-152) 71.4% - 75.5% 77.4%
SCK⊕ (I3D) 77.8% 80.4% - -

KRP-FS 70.0% [93] (VGG-19) KRP-FS+IDT 76.1% [93] (VGG-19)
GRP 68.4% [8] (VGG-19) GRP+IDT 75.5% [8] (VGG-19)

TABLE 6: Results (mAP%) for (top) our HOK [30] and improved
SCK⊕. We also indicate results on the baseline two-stream network
with standard average pooling (AP). We indicate backbones in paren-
theses. (bottom) The state of the art on MPII Cooking Activities.

sp1 sp2 sp3 mean acc.
Two-stream+AP (ResNet-152) 65.30% 62.20% 62.55% 63.35%
Two-stream+MP (ResNet-152) 61.38% 60.58% 60.06% 60.66%
SCK⊕ (ResNet-152) 72.55% 70.85% 71.63% 71.67%
SCK⊕ (ResNet-152)+IDT 74.20% 73.73% 73.40% 73.77%
SCK⊕(r=2) (I3D)+IDT 85.61% 84.54% 85.25% 85.13%
SCK⊕ (I3D)+IDT 86.31% 85.63% 86.41% 86.11%

DSP 72.4% [90] (ResNet-152) ShuttleNet+MIF 71.08% [94]
DSP+IDT 74.3% [90] (ResNet-152) I3D 80.2% [28]

TABLE 7: Evaluations of (top) our improved SCK⊕. We also
indicate results on baseline two-stream network with standard average
pooling (AP) and maximum pooling (MP). We indicate backbones in
parentheses. (bottom) The state of the art on HMDB-51.

tons (for 3D body-joints) and/or frame-based classifier scores (se-
mantic information) by feeding them into kernelsG

σ
(1)
2
, ..., G

σ
(Q)
2

from Eq. (23) for Q modalities.
Table 4 (top) shows that, our SCK⊕ yields some ∼3.6%

improvement over SCK and reaches 72.82% accuracy on the
NTU-RGBD dataset in the cross- subject setting for the 3D body-
joints as input. We expect that aggregating over subsequences can
encode local fine-grained motion details essential for the good
performance. Similar observations hold for the cross-view setting.

Table 4 (middle) shows that our SCK⊕ attains 90.11%
accuracy on the NTU-RGBD dataset in the cross- subject setting
on the RGB frames (classifier scores) as input. With the 3D body-
joints added, results increase to 90.78%. Lastly, adding optical
flow as input to our SCK⊕ yields 91.56%. This is ∼ 10.0%
improvement over competing methods from Table 4 (bottom).

Table 6 shows that our SCK⊕ yields some 1.4% mAP im-
provement over other state-of-the-art methods [8, 93] on the MPII
Cooking Activities dataset. Further improvements are attained
by combining SCK⊕ with the second-order descriptor (sec-ord)
[93] and the IDT representation, which yields 77.4% mAP. This
compares favorably with other methods in the table. We also
note that SCK⊕ outperforms the HOK descriptor [30] which is
a variant of SCK with a suboptimal linearization of an fc layer.
Finally, applying SCK⊕ over I3D-based subsequences yields
state-of-the-art 80.4% mAP (we comment on the reasons below).
Video Classification. Table 4 confirms that the classifier scores
extracted from CNNs rather than mere 3D body-joints are a
more informative input for SCK⊕. Thus, we perform additional
evaluations on the HMDB-51 dataset. Table 7 (top) shows that

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 12

SCK⊕ and SCK⊕+IDT, trained with the two-stream ResNet-152
backbone, score 71.67 and 73.77% accuracy which is on a par
with other best methods listed in Table 7 (bottom). Furthermore,
applying the I3D backbone on SCK⊕ yields state-of-the-art
86.11% accuracy. We believe that training I3D on subsequences of
various lengths and strides, as detailed in Section 5.2 (bottom), is
a more discriminative strategy than average-pooling of frame-wise
features in standard two-stream networks. As SCK⊕ is designed
to combine subsequences of various lengths and strides rather
than sequences, it captures informative higher-order occurrences
of multiple complementary features, and also preserves a degree
of individual statistics by factoring out one variable at a time e.g.,
see the discussion in Figure 3.

Kinetics-400. Table 5 shows that our SCK and SCK⊕ are
complementary to powerful networks such as ST-GCN [75]. We
work with Kinetics skeletons extracted with [5] and compare
our method to the baseline ST-GCN [75]. We use the standard
training/evaluation protocol (but we use skeletons rather than
RGB or optical flow frames). As SCK and SCK⊕ are shallow
representations based on higher-order aggregation, it is unrealistic
to expect them to outperform deep networks. However, SCK
and SCK⊕ capture very different statistics compared to deep
networks, being highly complementary. Table 5 shows that we
attain 1.1% and 2.1% gain over ST-GCN alone by concatenating
both representations.

Signature Lengths. Section 5.6 indicates the number of pivots
for SCK⊕ on NTU (skeleton-based experiments) to amount to
d = 3Z2 +Z3 +Z4 +Z5 = 15 + 5 + 5 + 3 = 28. The unique
number of coefficients in the super-symmetric tensor of order r
follows the formula

(d+r−1
r

)
discussed just below Eq. (11). As

we obtain a tensor per joint, and we concatenate unique parts of
tensors j = 1, ..., J , we have

(d+r−1
r

)
·J coefficients in total in

our representation. For SCK⊕ on NTU with J = 25 body joints,
we obtain 4060×25 = 101500 coefficients for SCK⊕. For SCK
and SCK (r=2) on NTU, we set d=3Z2+Z3 = 24+5=29 and
obtain 112375 and 10875 coefficients, respectively. For Kinetics
skeletons with J = 18 body joints, OpenPose returns only two
Cartesian coordinates, so we set d= 2Z2 +Z3 +Z4 +Z5 = 20+
5+5+3=33 which yields 4545×18=117810 coefficients.

For SCK⊕ (NTU) on (i) RGB frames and (ii) RGB
frames+optical flow, we obtain d=Z2+Z3+Z4+Z5 =60+5+5+3=
73 and d=2Z2+Z3+Z4+Z5 =73 (for the latter case, we reduce
the size of vector of classifier scores 2× by the PCA). As we do
not use any body joints here, we obtain 67525 coefficients. When
we concatenate these representations with the skeleton-based one,
we obtain 67525+101500=169025 coefficients per video.

On SCK⊕ given MPII and HMDB-51 datasets, we obtain
171700 and 125580 coefficients after reducing the size of vectors
of RGB frame-wise and optical flow classifier scores from 2×64
to 100 and from 2×51 to 90, respectively.

Parameters in SCK⊕. The main parameters shared between
SCK and SCK⊕ are evaluated in Figures 7 and 8. The parameters
for SCK⊕ that we start with are indicated in Section 4.5 (bottom).
To select the best parameters, we cross-validate one parameter at
a time while keeping the rest fixed. For NTU, we aggregated over
subsequence lengths (using the Matlab notation) of 14 : 1 : 110,
14 : 2 : 110, 14 : 4 : 110 and 14 : 6 : 110, and we obtained 73.10%,
72.82%, 72.41% and 71.65% accuracy, respectively. For subse-
quence lengths 30 : 2 : 110 and 30 : 2 : 80, we obtained 72.54%
and 72.12% accuracy. These evaluations show that SCK⊕ is

not overly sensitive to its parameters. For smaller skeleton-based
datasets, we aggregate subsequences in range 6 : 2 : 24, whereas
on HMDB-51 we use 6:8 :62, and for MPII we use 48:16:96.
Processing Time. For SCK/DCK, processing a sequence with
unoptimized MATLAB code on a single i5 core takes 0.2s and
1.2s, respectively. For SCK⊕ / DCK⊕, processing one sequence
takes 0.5s and 3.0s. Training on full MSR-Action3D with the
SCK+DCK takes about 13 min, whereas with the SCK⊕ +
DCK⊕, it takes about 35 min. In comparison, extracting SE(3)
features [12] takes 5.3s per sequence, processing on the full MSR-
Action3D dataset takes ∼50 min., whereas with post-processing
(time warping and Fourier pyramids) it takes about 72 min. Thus,
SCK+DCK is ∼ 5.4× faster while SCK⊕ + DCK⊕ is ∼ 2×
faster. Section C contains the computational complexity analysis.

6 CONCLUSIONS

We have presented two kernel-based tensor representations,
namely the sequence compatibility kernel (SCK) and dynamics
compatibility kernel (DCK). SCK captures the higher-order corre-
lations between 3D coordinates of the body-joints and their tempo-
ral variations. As SCK factors out the temporal variable, expensive
Fourier temporal pyramid matching/dynamic time warping are not
needed. Further, our DCK kernel captures the action dynamics by
modeling the spatio-temporal co-occurrences of the body-joints.

Additionally, we have presented a highly effective extension
of SCK, termed SCK⊕, which aggregates over subsequences of
multiple lengths, focusing on actions within subsequences. We
have demonstrated that SCK⊕ can aggregate over 3D body-joints
and/or frame-wise classifier scores from CNNs to capture higher-
order statistics between various features extracted from body-
skeletons, classifier scores, and temporal positions.

Section D shows that (Tensor) Eigenvalue Power Normalization
indeed acts as a spectrum-based metric with

(Z∗
r

)
subspace-

based detectors of higher-order occurrence of datapoints of
dim. Z∗, more specifically, detectors that capture asymmetry of
projections into ‘positive’ and ‘negative’ parts of each subspace.
As
(Z∗

3

)
�
(Z∗

2

)
, third-order tensors capture more dependencies

than autocorrelation matrices, improving fine-grained systems.

REMAINING DETAILS/DERIVATIONS

A. Linearizing Dynamics Compatibility Kernel

In what follows, we derive the linearization of DCK. Let us
recall that Gσ(u − ū) = exp(−‖u− ū‖22 /2σ2), G′σ(α,β) =
Gσ(α)Gσ(β) and Gσ(i − j) = δ(i − j) if σ → 0, therefore
δ(0) = 1 and δ(u) = 0 if u 6= 0. Moreover, Λ = J2 is a
normalization constant and J = IJ × IN . We recall that kernel
Gσ′2(x−y) ≈ φ(x)Tφ(y) whileGσ′3(s−tN) ≈ z(s/N)T z(t/N).
Thus, we obtain Eq. (29) which expresses KD(ΠA, ΠB) as a
sum over dot-products on third-order non-symmetric tensors. We
introduce operator G into Eq. (29) to amend the dot-product with
a distance which handles burstiness. We obtain a modified kernel
in Eq. (30) based on which the following notation is introduced:

Vii′=G(X ii′), where (31)

X ii′=
1√
Λ

∑
s,s′∈IN:
s′6=s

Gσ′4(s−s′)
(
φ(xis−xi′s′)·z

(s
N

)T)↑⊗ z
(s′
N

)
,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 13

KD(ΠA, ΠB) =
1

Λ

∑
(i,s)∈J,
(i′,s′)∈J,
i′6=i,s′6=s

∑
(j,t)∈J,
(j′,t′)∈J ,
j′6=j,t′6=t

G′σ′1
(i−j, i′−j′)Gσ′2

(
(xis−xi′s′)−

(
yjt − yj′t′

))
G′σ′3

(
s− t
N

,
s′ − t′

N
) ·G′σ′4 (s−s

′, t−t′)

=
1

Λ

∑
i,i′∈IJ:
i′6=i

∑
s,s′∈IN:

s′6=s

∑
t,t′:
t′6=t

Gσ′2

(
(xis−xi′s′)−

(
yjt − yj′t′

))
Gσ′3

(s− t
N

)
Gσ′3

(s′ − t′
N

)
·Gσ′4 (s−s

′)Gσ′4
(t−t′)

∣∣∣∣∣ j=i
j′=i′

≈
1

Λ

∑
i,i′∈IJ:
i′6=i

∑
s,s′∈IN:

s′6=s

∑
t,t′∈IN:

t′6=t

φ (xis−xi′s′)Tφ (yit − yi′t′)·z
(s
N

)T
z
(t
N

)
·z
(s′
N

)T
z
(t′
N

)
·Gσ′4 (s−s

′)Gσ′4
(t−t′)

=
1

Λ

∑
i,i′∈IJ:
i′6=i

∑
s,s′∈IN:

s′6=s

∑
t,t′∈IN:

t′6=t

〈
Gσ′4

(s−s′)
(
φ(xis−xi′s′)·z

(s
N

)T)↑⊗ z
(s′
N

)
, Gσ′4

(t−t′)
(
φ(yit−yi′t′)·z

(t
N

)T)↑⊗ z
(t′
N

)〉

=
∑

i,i′∈IJ:
i′6=i

〈
1
√
Λ

∑
s,s′∈IN:

s′6=s

Gσ′4
(s−s′)

(
φ(xis−xi′s′)·z

(s
N

)T)↑⊗ z
(s′
N

)
,

1
√
Λ

∑
t,t′∈IN:

t′6=t

Gσ′4
(t−t′)

(
φ(yit−yi′t′)·z

(t
N

)T)↑⊗ z
(t′
N

)〉
(29)

K∗D(ΠA, ΠB) =
∑

i,i′∈IJ:
i′6=i

〈
G
(

1
√
Λ

∑
s,s′∈IN:

s′6=s

Gσ′4
(s−s′)

(
φ(xis−xi′s′)·z

(s
N

)T)↑⊗ z
(s′
N

))
,G
(

1
√
Λ

∑
t,t′∈IN:

t′6=t

Gσ′4
(t−t′)

(
φ(yit−yi′t′)·z

(t
N

)T)↑⊗ z
(t′
N

))〉
(30)

and the summation over the pairs of body-joints in Eq. (30) is
replaced by the concatenation along the fourth mode to obtain
representations

[
Vii′

]⊕4

i>i′: i,i′∈IJ
and

[
V̄ii′

]⊕4

i>i′: i,i′∈IJ
for ΠA

and ΠB . Thus, K∗D becomes:

K∗D(ΠA, ΠB) =
〈√

2
[
Vii′

]⊕4

i>i′: i,i′∈IJ
,
√

2
[
V̄ii′

]⊕4

i>i′: i,i′∈IJ

〉
(32)

As Eq. (32) suggests, we avoid repeating the same evaluations in
our representations: we stack only unique pairs of body-joints i>
i′. Moreover, we ensure we run computations temporally only for
s> s′. In practice, we have to evaluate only

(JN
2

)
unique spatio-

temporal pairs in Eq. (32) rather than naive J2N2 per sequence.
The final representation is of Z ′2·

(JZ′3
2

)
size, where Z ′2 and Z ′3 are

the numbers of pivots for approximation of Gσ′2 and Gσ′3 .
We assume that all sequences have N frames for simplifica-

tion of presentation. Our formulations are equally applicable to
sequences of arbitrary lengths e.g., M and N . Thus, we apply in
practice G′σ′3(s

M − t
N ,

s′

M − t′

N) and Λ=J2MN in Eq. (29).
Moreover, a displacement between any pair of joints x,y∈R3

lies within the Cartesian coordinate system, thus x−y ∈ R3.
In practice, in place of generic Gσ′2 , we use the sum kernel
G
′

σ′2
(x−y)=Gσ′2(x1−y1)+Gσ′2(x2−y2)+Gσ′2(x3−y3) so the

kernel G
′

σ′2
(x−y)≈ [φ(x1);φ(x2);φ(x3)]

T[φ(y1);φ(y2);φ(y3)].
However, for the simplicity of notation, we refer to it in our
formulations by its generic form Gσ′2(x−y) ≈ φ(x)Tφ(y), as
we can simply define φ(x)=[φ(x1);φ(x2);φ(x3)].

B. Positive Definiteness of SCK and DCK
SCK/DCK are sums over products of RBF subkernels. Accord-
ing to [95], sums, products and linear combinations (for non-
negative weights) of positive definite kernels yield positive definite
kernels. Moreover, subkernel Gσ′2 ((xis−xi′s′)−(yjt − yj′t′))
employed by DCK in Eq. (29) (top) can be rewritten as:

Gσ′2
(
zisi′s′−z′jtj′t′

)
, (33)

where zisi′s′=xis−xi′s′ and z′jtj′t′=yjt − yj′t′ .

The RBF kernelGσ′2 is positive definite (PD) by definition and
the mappings from xis and xi′s′ to zisi′s′ and from yjt and yj′t′
to z′jtj′t′ , respectively, are unique. Thus, the entire kernel is PD.

Whitening on SCK results in a positive (semi)definite (PSD)
kernel as we employ the Power-Euclidean kernel e.g., if X is PD
then Xγ stays also PD for 0 < γ ≤ 1 because Xγ = UλγV
and element-wise rising of eigenvalues to the power of γ gives
us daig(λ)γ ≥ 0. Thus, the sum over dot-products of positive
(semi)definite matrices raised to the power of γ stays PSD/PD.

C. Computational Complexity
Non-linearized SCK with ker. SVM have complexity O(JN2T ρ)
given J body joints, N frames per sequence, T sequences, and
2<ρ< 3 which concerns complexity of kernel SVM. Linearized
SCK with linear SVM takes O(JNTZr∗) for total of Z∗ pivots
and tensor of order r=3. Note that N2T ρ�NTZr∗ . For N=50
and Z∗=20, this is 3.5× (or 32×) faster than the exact kernel for
T =557 (or T =5000) used in our experiments.

Non-linearized DCK+kernel SVM enjoys O(J2N4T ρ) com-
plexity. Linearized DCK+SVM enjoys O(J2N2TZ3) for Z
pivots per kernel, e.g. Z = Z2 = Z3 given Gσ′2 and Gσ′3 . As
N4T ρ � N2TZ3, the linearization is 11000× faster than the
exact kernel, for say Z = 5. Slice-wise EPN applied to SCK has
negligible cost O(JTZω+1

∗), where 2 < ω < 2.376 concerns
complexity of eigenvalue decomposition applied per tensor slice.

Note that EPN incurs negligible cost (see [96] for details).
EPN applied to DCK utilizes HOSVD and results in complexity
O(J2TZ4). As HOSVD is performed by truncated SVD on
matrices obtained from unfolding Vii′ ∈ RZ×Z×Z along a chosen
mode, O(Z4) represents the complexity of truncated SVD on
matrices Vii′ ∈ RZ×Z

2

which have rank less than or equal Z .
Linearized SCK⊕ with linear SVM also takes O(JNTZr∗)

for a total of Z∗. However, Z∗=3Z2+Z3+Z4+Z5 thus Z∗=28.
The linearized DCK⊕ takes O(J2N2TZ3Z6) where Z6 = 4 in
our experiments. EPN applied to SCK⊕ and DCK⊕ results in
complexity O(JTZ

2(r−1)
∗) and O(J2TZ4Z6).

D. What is (Tensor) Eigenvalue Power Normalization?
Below, we show that EPN in fact retrieves factors which quantify
whether there is at least one datapoint φ(xn) from n ∈ IN
projected into each subspace spanned by r-tuples of eigenvectors
from matrices A1 = A2 = ... = Ar. For brevity, assume order

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 14

0 1e−3 2e−3 3e−3 4e−3
0

E ∼ Beta(α=1, β=3)

co
u
n
t

(a) Initial spectral dist.

0 0.25 0.5 0.75 1.0

400

1 − (1 − E)η

0 0.25 0.5 0.75 1.0

400

1 − (1 − E)η

co
u
n
t

MaxExp η=900

MaxExp η=5000

(b) Pushforward (MaxExp)

0 0.25 0.5 0.75 1.0

400

Eγ

0 0.25 0.5 0.75 1.0

400

Eγ

co
u
n
t

Gamma γ=0.1

Gamma γ=0.01

(c) Pushforward (Gamma)

0

1

pi/4 pi/2pi/400

0

1

pi/4 pi/2pi/400

0

1

pi/2pi/4 pi/400

(d) Spectral detectors

Fig. 9: The intuitive principle of the EPN. Given a discrete spectrum following a Beta distribution in Fig. 9a, the pushforward measures by
MaxExp and Gamma in Fig. 9b and 9c are very similar for large η (and small γ). Note that both EPN functions in bottom plots whiten the
spectrum (map most values to be close to 1) thus removing burstiness. Fig. 9d illustrates the principle of detecting higher-order occurrence(s) in
one of

(
Z∗
r

)
subspaces represented by Eu,v,w (we write E for simplicity). Fig. 9d (top) No EPN: E(θ, α), (middle) MaxExp: 1−(1−E(θ, α))η

and (bottom) Gamma: E(θ, α)γ . Note how MaxExp/Gamma reach high detection values close to borders. Refer Section A for def. of E(θ, α).

r=3, a super-symmetric case, and a 3-tuple of eigenvectors u, v,
and w from A. Note that u⊥ v,v⊥w and u⊥w. Moreover,
note that if we have Z∗ unique eigenvectors, we can enumerate(Z∗
r

)
r-tuples and thus

(Z∗
r

)
subspaces Rr⊂RZ∗ . For brevity, let

||φ(x)||2 = 1 and φ(x)≥ 0. Also, we write φn instead of φ(x)
for n∈IN . Next, let us write our super-symmetric tensor as:

X =
1

N

∑
n∈IN

↑⊗r φn, (34)

and the ‘diagonalization’ of X w.r.t. by eigenvec. u, v, and w as:

Eu,v,w = ((X ⊗1u) ⊗1v)⊗3w, (35)

where Eu,v,w is a coefficient from the core tensor E for eigenvec-
tors u, v, and w. Now, we combine Eq. 34 and 35 and obtain:

Eu,v,w =

(((1

N

∑
n∈IN

↑⊗3 φn
)
⊗1u

)
⊗2v

)
⊗3w

=
1

N

∑
n∈IN

〈φn,u〉 〈φn,v〉 〈φn,w〉 (36)

We assume φn is projected into subspace spanned by u,v and
w when ψ′n=〈φn,u〉 〈φn,v〉 〈φn,w〉 is maximized. As our u,
v, and w are orthogonal w.r.t. each other and ||φn||2 =1, simple
Lagrange eq. L=Πr

i=1e
T
iφn+λ(||φn||22−1) yields maximum of

κ= (1/
√
r)r at φn = [(1/

√
r), ..., (1/

√
r)]T . For each n∈IN ,

we store ψn=ψ′n/κ in vector ψ.

Assume that ψ∈{0, 1}N stores N outcomes of drawing from
Bernoulli distribution under the i.i.d. assumption for which the
probability p of an event (ψn = 1) and 1−p for (ψn = 0) is
estimated as an expected value, p=Avgn ψn (even if 0≤ψ≤1
in reality). Then the probability of at least one projection event
(ψn = 1) into the subspace spanned by r-tuples in N trials
becomes:
Êu,v,w=1−(1−p)N = 1−

(
1−
Eu,v,w
κ

)N
≈
(
Eu,v,w
κ

)γ
. (37)

Thus, each of
(Z∗
r

)
subspaces spanned by r-tuples acts as a

detector of projections into this subspace. The middle part of
Eq. (37) (so-called MaxExp pooling) and its connection to the
right-hand part of Eq. (37) (so-called Gamma) are detailed in
[2]. In fact, our ψ can be negative so extending Eq. (37) to
Sgn(Eu,v,w)

(
1−(1−|Eu,v,w|κ)N+η

)
makes our model a detector

of asymmetry between projections into ‘positive’ and ‘negative’
parts of each subspace, and η compensates for non-binary ψ.

Figure 9 illustrates that MaxExp and Gamma are in fact very
similar. Figure 9a shows an initial Beta distribution of spectrum.

Figures 9b and 9c (bottom) show that for sufficiently large pa-
rameters η and γ, both MaxExp and Gamma shift most of the
distribution values to be approximately equal 1. Figure 9c illus-
trates the effect of EPN on eigenvalue Eu,v,w (denoted as E for
simplicity) representing a single subspace spanned by eigenvectors
u,v,w such that u⊥v,v⊥w and u⊥w. As a single projection
into the subspace is defined as ψn=〈φn,u〉 〈φn,v〉 〈φn,w〉 /κ,
we note this is the product of three projections of φn onto
u,v,w, respectively, measured by the cosine (dot-product). Thus,
we parametrize such a projection by the spherical coordinates, that
is:

πu(θ, α)=cos(θ)·sin(α), πv(θ, α)=sin(θ)·sin(α),

πu(α)=cos(α), (38)

where the azimuthal coordinate θ runs from 0 to 2π and the polar
coordinate α runs from 0 to π. We rewrite the projection as:

πu,v,w(θ, α)=πu(θ, α)·πv(θ, α)·πw(α)/κ. (39)

We note that πu,v,w(θ, α) and ψn are isomorphic as ||φn||2 =1,
thus it suffices to note Eu,v,w∼πu,v,w(θ, α) and show the EPN
pushforward output of E to understand how EPN behaves around
the boundaries of the spanning vectors u,v,w. Figure 9d (top)
shows that E by itself has a weak response in the proximity of
the spanning vectors u,v,w. However, MaxExp and Gamma in
Figures 9d middle and bottom manage to boost projections in the
proximity of the spanning vectors in the similar manner to each
other, both behaving like spectral detectors.

To conclude, let us consider the dot-product between Power
Normalized tensors X and Y computed according to Eq. (15-17).
Then:〈
V̂(X), V̂(Y)

〉
=

〈 ∑
u∈U(X)
v∈V (X)
w∈W(X)

Êu,v,wuvT ↑⊗w,
∑

u′∈U(Y)

v′∈V (Y)

w′∈W(Y)

Ê ′u′,v′,w′u
′v′T ↑⊗w′

〉

=
∑

u∈U(X)
v∈V (X)
w∈W(X)

∑
u′∈U(Y)

v′∈V (Y)

w′∈W(Y)

Êu,v,wÊ ′u′,v′,w′
〈
u,u′

〉 〈
v,v′

〉 〈
w,w′

〉
.

(40)

Eq. (40) shows that all subspaces of X and Y spanned by r-tuples
(3-tuples in this example) are compared against each other for
alignment by the cosine distance. When two subspaces [u vw]T

and [u′ v′w′]T are aligned, for a strong similarity between these
subspaces, a detection of at least one φn and φ′n evidenced by
Êu,v,w and Ê ′u′,v′,w′ is also needed. We term Eq. (40) together
with Eq. (15-17) as Tensor Power Euclidean dot-product which
has the associated Tensor Power Euclidean metric ||X−Y ||T =
||V̂(X)− V̂(Y)||F .

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 15

REFERENCES

[1] T.-Y. Lin and S. Maji, “Improved Bilinear Pooling with CNNs,”
BMVC, 2017. 1, 2, 5

[2] P. Koniusz, H. Zhang, and F. Porikli, “A deeper look at power
normalizations,” CVPR, pp. 5774–5783, 2018. 1, 2, 5, 11, 14

[3] P. Koniusz, F. Yan, P. Gosselin, and K. Mikolajczyk, “Higher-
order occurrence pooling on mid- and low-level features: Visual
concept detection,” Technical Report, 2013. 1, 2

[4] ——, “Higher-order occurrence pooling for bags-of-words: Vi-
sual concept detection,” TPAMI, 2016. 1, 2, 3, 5, 9

[5] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh,
“OpenPose: realtime multi-person 2D pose estimation using Part
Affinity Fields,” CoRR abs/1812.08008, 2018. 1, 8, 11, 12

[6] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio,
A. Blake, M. Cook, and R. Moore, “Real-time human pose
recognition in parts from single depth images,” Communications
of the ACM, 2013. 1

[7] T. Mahmud, M. Hasan, and A. K. Roy-Chowdhury, “Joint
prediction of activity labels and starting times in untrimmed
videos,” ICCV, 2017. 1

[8] A. Cherian, B. Fernando, M. Harandi, and S. Gould, “General-
ized rank pooling for action recognition,” CVPR, 2017. 1, 11

[9] A. Cherian and S. Gould, “Second-order temporal pooling for
action recognition,” IJCV, 2018. 1

[10] P. Turaga and R. Chellappa, “Locally time-invariant models of
human activities using trajectories on the grassmannian,” CVPR,
2009. 1

[11] L. L. Presti and M. La Cascia, “3D skeleton-based human action
classification: A survey,” Pattern Recognition, 2015. 1, 2

[12] R. Vemulapalli, F. Arrate, and R. Chellappa, “Human action
recognition by representing 3D skeletons as points in a Lie
Group,” CVPR, pp. 588–595, 2014. 1, 2, 8, 10, 11, 12

[13] M. Harandi, M. Salzmann, and F. Porikli, “Bregman divergences
for infinite dimensional covariance matrices,” CVPR, 2014. 1

[14] M. E. Hussein, M. Torki, M. Gowayyed, and M. El-Saban, “Hu-
man action recognition using a temporal hierarchy of covariance
descriptors on 3D joint locations,” IJCAI, 2013. 1, 2

[15] A. Elgammal and C.-S. Lee, “Tracking people on a torus,”
TPAMI, 2009. 1

[16] B. Li, O. I. Camps, and M. Sznaier, “Cross-view activity recog-
nition using hankelets,” CVPR, 2012. 1

[17] K. Simonyan and A. Zisserman, “Two-stream convolutional
networks for action recognition in videos,” NIPS, 2014. 1, 8

[18] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional net-
works,” ICCV, 2015. 1

[19] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional
neural networks,” CVPR, 2014. 1

[20] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent
convolutional networks for visual recognition and description,”
CVPR, 2015. 1

[21] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V.
Gool, “Temporal segment networks: Towards good practices for
deep action recognition,” ECCV, 2016. 1

[22] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri,
“A closer look at spatiotemporal convolutions for action recog-
nition,” CVPR, 2018. 1

[23] G. Chéron, I. Laptev, and C. Schmid, “P-CNN: Pose-based CNN
Features for Action Recognition,” ICCV, 2015. 1, 2

[24] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural
networks for human action recognition,” TPAMI, 2013. 1

[25] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele, “A
database for fine grained activity detection of cooking activities,”
CVPR, 2012. 1, 2, 7, 8

[26] C. Wang, Y. Wang, and A. L. Yuille, “An approach to pose-based
action recognition,” CVPR, 2013. 1, 2

[27] S. Zuffi and M. J. Black, “Puppet flow,” IJCV, vol. 101, no. 3,

pp. 437–458, 2013. 1, 2
[28] J. Carreira and A. Zisserman, “Quo Vadis, Action Recognition?

A New Model and the Kinetics Dataset,” CVPR, 2018. 1, 8, 11
[29] P. Koniusz, A. Cherian, and F. Porikli, “Tensor representations

via kernel linearization for action recognition from 3D skele-
tons,” ECCV, 2016. 1, 2

[30] A. Cherian, P. Koniusz, and S. Gould, “Higher-order pooling
of cnn features via kernel linearization for action recognition,”
WACV, 2017. 1, 11

[31] L. Xia, C.-C. Chen, and J. K. Aggarwal, “View invariant hu-
man action recognition using histograms of 3D joints,” CVPR
Workshops, pp. 20–27, 2012. 2, 7, 8, 10

[32] L. Seidenari, V. Varano, S. Berretti, A. D. Bimbo, and P. Pala,
“Recognizing actions from depth cameras as weakly aligned
multi-part bag-of-poses,” CVPR Workshop, 2013. 2, 7, 8, 10

[33] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag
of 3D points,” CVPR Workshop, pp. 9–14, 2010. 2, 7, 8, 10, 11

[34] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre,
“Hmdb: a large video database for human motion recognition,”
ICCV, pp. 2556–2563, 2011. 2, 7, 8

[35] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A
large scale dataset for 3d human activity analysis,” CVPR, pp.
1010–1019, 2016. 2, 7, 8

[36] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vi-
jayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Su-
leyman, and A. Zisserman, “The kinetics human action video
dataset,” CoRR abs/1705.06950, 2017. 2, 7, 8, 11

[37] V. M. Zatsiorsky, “Kinematic of human motion,” Human Kinet-
ics Publishers, 1997. 2

[38] G. Johansson, “Visual perception of biological motion and a
model for its analysis,” Perception and Psychophysics, vol. 14,
no. 2, pp. 201–211, 1973. 2

[39] F. Lv and R. Nevatia, “Recognition and segmentation of 3-D
human action using hmm and multi-class adaboost,” ECCV, pp.
359–372, 2006. 2

[40] V. Parameswaran and R. Chellappa, “View invariance for human
action recognition,” IJCV, vol. 66, no. 1, pp. 83–101, 2006. 2

[41] Y. Wu, Z. Liu, Y. Wu, and J. Yuan, “Mining actionlet ensemble
for action recognition with depth cameras,” CVPR, 2012. 2, 10,
11

[42] X. Yang and Y. Tian, “Effective 3D action recognition using
eigenjoints,” J. Vis. Comun. Image Represent., vol. 25, no. 1, pp.
2–11, 2014. 2

[43] Y. Yacoob and M. J. Black, “Parameterized modeling and
recognition of activities,” ICCV, pp. 120–128, 1998. 2

[44] E. Ohn-Bar and M. M. Trivedi, “Joint angles similarities and
HOG2 for action recognition,” CVPR Workshop, 2013. 2

[45] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy,
“Sequence of the most informative joints (SMIJ),” J. Vis. Comun.
Image Represent., vol. 25, no. 1, pp. 24–38, 2014. 2

[46] L. Bo, K. Lai, X. Ren, and D. Fox, “Object recognition with
hierarchical kernel descriptors,” CVPR, 2011. 2

[47] L. Wang, J. Zhang, L. Zhou, C. Tang, and W. Li, “Beyond co-
variance: Feature representation with nonlinear kernel matrices,”
ICCV, 2015. 2, 10

[48] J. Cavazza, A. Zunino, M. S. Biagio, and M. Vittorio, “Kernel-
ized covariance for action recognition,” CoRR abs/1604.06582,
2016. 2

[49] J. Zhang, L. Wang, and L. Zhou, “Beyond covariance: Sice and
kernel based visual feature representation,” IJCV, 2020. 2

[50] A. Gaidon, Z. Harchoui, and C. Schmid, “A time series kernel
for action recognition,” BMVC, pp. 63.1–63.11, 2011. 2

[51] T.-K. Kim, K.-Y. K. Wong, and R. Cipolla, “Tensor canonical
correlation analysis for action classification,” CVPR, 2007. 2

[52] A. Shashua and T. Hazan, “Non-negative tensor factorization
with applications to statistics and computer vision,” ICML, 2005.
2

[53] M. A. Vasilescu and D. Terzopoulos, “Tensortextures: multi-
linear image-based rendering,” ACM Transactions on Graphics,
vol. 23, no. 3, pp. 336–342, 2004. 2

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED, DECEMBER 2018, ACCEPTED, DECEMBER 2019 16

[54] ——, “Multilinear analysis of image ensembles: Tensorfaces,”
ECCV, 2002. 2

[55] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A sur-
vey of multilinear subspace learning for tensor data,” Pattern
Recognition, vol. 44, no. 7, pp. 1540–1551, 2011. 2

[56] P. Koniusz and A. Cherian, “Sparse coding for third-order
super-symmetric tensor descriptors with application to texture
recognition,” CVPR, 2016. 2

[57] X. Zhao, S. Wang, S. Li, and J. Li, “A comprehensive study
on third order statistical features for image splicing detection,”
Digital Forensics and Watermarking, pp. 243–256, 2012. 2

[58] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convo-
lutional pose machines,” CVPR, 2016. 2

[59] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and
B. Schiele, “Deepercut: A deeper, stronger, and faster multi-
person pose estimation model,” ECCV, 2016. 2

[60] Y. Zhou, B. Ni, R. Hong, M. Wang, and Q. Tian, “Interaction
part mining: A mid-level approach for fine-grained action recog-
nition,” CVPR, 2015. 2

[61] E. Shechtman and M. Irani, “Space-time behavior based corre-
lation,” CVPR, 2005. 2

[62] P. Koniusz and H. Zhang, “Power normalizations in fine-grained
image, few-shot image and graph classification,” TPAMI, 2020.
2

[63] L. Wang, P. Koniusz, and D. Q. Huynh, “Hallucinating idt
descriptors and i3d optical flow features for action recognition
with cnns,” ICCV, 2019. 2

[64] T.-Y. Lin, S. Maji, and P. Koniusz, “Second-order democratic
aggregation,” ECCV, 2018. 2

[65] H. Zhang, L. Zhang, X. Qi, H. Li, P. H. S. Torr, and P. Ko-
niusz, “Few-shot action recognition with permutation-invariant
attention,” ECCV, pp. 525–542, 2020. 2

[66] H. Zhang and P. Koniusz, “Power normalizing second-order
similarity network for few-shot learning,” WACV, 2019. 2

[67] C. Simon, P. Koniusz, R. Nock, and M. Harandi, “Adaptive
subspaces for few-shot learning,” CVPR, 2020. 2

[68] S. Zhang, D. Luo, L. Wang, and P. Koniusz, “Few-shot object
detection by second-order pooling,” ACCV, 2020. 2

[69] C. Simon, P. Koniusz, R. Nock, and M. Harandi, “On modulating
the gradient for meta-learning,” ECCV, 2020. 2

[70] F. Shiri, X. Yu, F. Porikli, and P. Koniusz, “Face destylization,”
DICTA, 2017. 2

[71] F. Shiri, F. Porikli, R. Hartley, and P. Koniusz, “Identity-
preserving face recovery from portraits,” WACV, 2018. 2

[72] F. Shiri, X. Yu, F. Porikli, R. Hartley, and P. Koniusz, “Recover-
ing faces from portraits with auxiliary facial attributes,” WACV,
2019. 2

[73] ——, “Identity-preserving face recovery from stylized portraits,”
IJCV, vol. 127, no. 6-7, pp. 863–883, 2019. 2

[74] L. Wang and P. Koniusz, “Self-supervising action recognition by
statistical moment and subspace descriptors,” ACM Multimedia,
2021. 2

[75] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convo-
lutional networks for skeleton-based action recognition,” AAAI,
2018. 2, 8, 10, 11, 12

[76] K. Sun, P. Koniusz, and Z. Wang, “Fisher-bures adversary graph
convolutional networks,” UAI, vol. 115, pp. 465–475, 2019. 2

[77] H. Zhu and P. Koniusz, “Simple spectral graph convolution,”
ICLR, 2021. 2

[78] ——, “REFINE: Random RangE FInder for network embed-
ding,” CIKM, 2021. 2

[79] T. Huckle, www5.in.tum.de/persons/huckle/tensor-kurs 1.pdf,
2019. 3

[80] T. Jebara, R. Kondor, and A. Howard, “Probability product
kernels,” JMLR, vol. 5, pp. 819–844, 2004. 3

[81] H. Jégou, M. Douze, and C. Schmid, “On the burstiness of visual
elements,” CVPR, pp. 1169–1176, 2009. 5

[82] T. Brox and J. Malik, “Large displacement optical flow: Descrip-
tor matching in variational motion estimation,” TPAMI, vol. 33,
no. 3, pp. 500–513, Mar. 2011. 8

[83] H. Wang, A. Kläser, C. Schmid, and C. L. Liu, “Dense trajec-
tories and motion boundary descriptors for action recognition,”
IJCV, vol. 103, no. 1, pp. 60–79, 2013. 9

[84] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the Fisher
Kernel for Large-Scale Image Classification,” ECCV, 2010. 9

[85] A. B. Tanfous, H. Drira, L. Zhou, and B. B. Amor, “Coding
kendall’s shape trajectories for 3d action recognition,” CVPR,
2018. 10

[86] Y. Tas and P. Koniusz, “Cnn-based action recognition and
supervised domain adaptation on 3d body skeletons via kernel
feature maps,” BMVC, 2018. 10

[87] M. Zanfir, M. Leordeanu, and C. Sminchisescu, “The moving
pose: An efficient 3D kinematics descriptor for low-latency
action recognition and detection,” ICCV, 2013. 10

[88] Q. Ke, S. Bennamoun, M. ana An, F. Sohel, and F. Boussaid,
“A new representation of skeleton sequences for 3d action
recognition,” CVPR, 2017. 10

[89] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng, “View
adaptive recurrent neural networks for high performance human
action recognition from skeleton data,” ICCV, 2017. 10

[90] J. Wang and A. Cherian, “Learning discriminative video rep-
resentations using adversarial perturbations,” ECCV, 2018. 10,
11

[91] B. Li, M. He, X. Cheng, Y. Chen, and Y. Dai, “Skeleton
based action recognition using translation-scale invariant image
mapping and multi-scale deep cnn,” CoRR abs/1704.05645v2,
2017. 10

[92] J.-F. Hu, W.-S. Zheng, J. Pan, J. Lai, and J. Zhang, “Deep
bilinear learning for rgb-d action recognition,” ECCV, 2018. 10

[93] A. Cherian, S. Sra, S. Gould, and R. Hartley, “Non-linear tem-
poral subspace representations for activity recognition,” CVPR,
2018. 11

[94] Y. Shi, Y. Tian, Y. Wang, W. Zeng, and T. Huang, “Learn-
ing long-term dependencies for action recognition with a
biologically-inspired deep network,” ICCV, 2017. 11

[95] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern
analysis. Cambridge University Press, 2004. 13

[96] P. Koniusz, A. Cherian, and F. Porikli, “Tensor representations
via kernel linearization for action recognition from 3D skeletons
(extended version),” CoRR abs/1604.00239, 2016. 13

Piotr Koniusz. A Senior Researcher in Machine
Learning Research Group at Data61/CSIRO
(NICTA), and a Senior Honorary Lecturer at the
Australian National University (ANU). He was a
postdoctoral researcher in the team LEAR, IN-
RIA, France. He received his BSc in Telecommu-
nications and Software Engineering in 2004 from
the Warsaw University of Technology, Poland,
and completed his PhD in Computer Vision in
2013 at CVSSP, University of Surrey, UK.

Lei Wang. He received the M.E. degree in soft-
ware engineering from The University of West-
ern Australia (UWA), Australia, in 2018. Since
then, he has worked as a Computer Vision Re-
searcher at iCetana Pty Ltd. He is currently a
PhD student at the Australian National University
and Data61/CSIRO under the supervision of Dr.
Piotr Koniusz. His research interests include hu-
man action recognition in videos, machine learn-
ing and computer vision.

Anoop Cherian. A Research Scientist at Mit-
subishi Electric Research Labs (MERL) Cam-
bridge, MA and an Adjunct Researcher at the
Australian Centre for Robotic Vision (ACRV) at
the Australian National University, Canberra. Be-
fore joining ANU, he was a postdoctoral re-
searcher in the LEAR team at INRIA, Grenoble.
He received my MS and PhD in 2010 and 2013
from the University of Minnesota, Minneapolis,
USA. He received his undergraduate (honors)
degree in computer science and engineering at

the National Institute of Technology (NIT), Calicut, India in 2002.

www5.in.tum.de/persons/huckle/tensor-kurs_1.pdf

